Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #5862

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 11月 23, 2017 by saxon_zh@saxon_zhGuest

Benchmark of refactorization and Tensorflow/Paddle V2

Created by: dzhwinter

Here we do some experiments to benchmark our implementation with TensorFlow/Paddle V2. Based on the Paddle commit id d883547b.

The TensorFlow use a special random number generate algorithm Phlixo, we fetch out the random value from Paddle and feed it into TensorFlow variable. I compared the results op by op with TensorFlow, find that our conv2d implementation has a difference of 6 to 8 decimal scale, other parts keep the same even at the last decimal.

TensorFlow has a speed 15x faster than our current refactorization version.

The benchmark results show as below: both the accuracy is same :

pass=0, batch=0, loss=2.305631, error=0.882812
pass=0, batch=1, loss=2.244341, error=0.789062
pass=0, batch=2, loss=2.081296, error=0.617188
pass=0, batch=3, loss=1.913030, error=0.320312
pass=0, batch=4, loss=1.817348, error=0.398438
pass=0, batch=5, loss=1.599624, error=0.242188
pass=0, batch=6, loss=1.427543, error=0.273438
pass=0, batch=7, loss=1.283092, error=0.226562
pass=0, batch=8, loss=1.280328, error=0.296875
pass=0, batch=9, loss=1.048430, error=0.210938
pass=0, batch=10, loss=0.975700, error=0.257812
pass=0, batch=11, loss=0.861773, error=0.289062
pass=0, batch=12, loss=0.692513, error=0.171875
pass=0, batch=13, loss=0.541580, error=0.125000
pass=0, batch=14, loss=0.581401, error=0.132812
pass=0, batch=15, loss=0.626544, error=0.148438
pass=0, batch=16, loss=0.452217, error=0.101562
pass=0, batch=17, loss=0.463440, error=0.164062

The time-consuming comparison.

Paddle

pass=2, batch=453, loss=0.024159, error=0.007812, elapse=0.031905
pass=2, batch=454, loss=0.006635, error=0.007812, elapse=0.032114
pass=2, batch=455, loss=0.009840, error=0.000000, elapse=0.031895
pass=2, batch=456, loss=0.006372, error=0.000000, elapse=0.031872
pass=2, batch=457, loss=0.004728, error=0.000000, elapse=0.031861
pass=2, batch=458, loss=0.014771, error=0.007812, elapse=0.031856
pass=2, batch=459, loss=0.007937, error=0.007812, elapse=0.031929
pass=2, batch=460, loss=0.000169, error=0.000000, elapse=0.031851
pass=2, batch=461, loss=0.000213, error=0.000000, elapse=0.031932
pass=2, batch=462, loss=0.002135, error=0.000000, elapse=0.031914
pass=2, batch=463, loss=0.017388, error=0.000000, elapse=0.032012
pass=2, batch=464, loss=0.030636, error=0.007812, elapse=0.031753
pass=2, batch=465, loss=0.000952, error=0.000000, elapse=0.031770
pass=2, batch=466, loss=0.148781, error=0.039062, elapse=0.031697
pass=2, batch=467, loss=0.001351, error=0.000000, elapse=0.031742
pass=2, batch=468, loss=0.254510, error=0.010417, elapse=0.025343

TensorFlow

pass=2, batch=453, loss=0.025126, error=0.007812, elapse=0.000567
pass=2, batch=454, loss=0.006477, error=0.007812, elapse=0.000425
pass=2, batch=455, loss=0.008151, error=0.000000, elapse=0.000505
pass=2, batch=456, loss=0.007689, error=0.000000, elapse=0.000589
pass=2, batch=457, loss=0.004428, error=0.000000, elapse=0.000453
pass=2, batch=458, loss=0.015366, error=0.007812, elapse=0.000412
pass=2, batch=459, loss=0.006853, error=0.000000, elapse=0.000644
pass=2, batch=460, loss=0.000175, error=0.000000, elapse=0.000405
pass=2, batch=461, loss=0.000173, error=0.000000, elapse=0.000764
pass=2, batch=462, loss=0.002133, error=0.000000, elapse=0.000473
pass=2, batch=463, loss=0.021018, error=0.000000, elapse=0.000493
pass=2, batch=464, loss=0.033293, error=0.007812, elapse=0.000556
pass=2, batch=465, loss=0.000927, error=0.000000, elapse=0.000469
pass=2, batch=466, loss=0.145350, error=0.046875, elapse=0.000645
pass=2, batch=467, loss=0.001364, error=0.000000, elapse=0.000793
pass=2, batch=468, loss=0.246977, error=0.010417, elapse=0.000297
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#5862
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7