test_understand_sentiment_lstm.py only use fixed data
Created by: JiayiFeng
In the test_understand_sentiment_lstm.py
, the training code is like this:
def main():
word_dict = paddle.dataset.imdb.word_dict()
cost, acc = lstm_net(dict_dim=len(word_dict), class_dim=2)
batch_size = 100
train_data = paddle.batch(
paddle.reader.buffered(
paddle.dataset.imdb.train(word_dict), size=batch_size * 10),
batch_size=batch_size)
data = chop_data(next(train_data()))
place = core.CPUPlace()
tensor_words, tensor_label = prepare_feed_data(data, place)
exe = Executor(place)
exe.run(framework.default_startup_program())
while True:
outs = exe.run(framework.default_main_program(),
feed={"words": tensor_words,
"label": tensor_label},
fetch_list=[cost, acc])
cost_val = np.array(outs[0])
acc_val = np.array(outs[1])
print("cost=" + str(cost_val) + " acc=" + str(acc_val))
if acc_val > 0.9:
break
Obviously, every batch the same data are fed into the model. It might be a good way to test basic functions of lstm, but it's not enough to check its performance on the real data.