run vgg_16 error
Created by: fbiswt
I got a error when I run "train.sh" in demo/image_classification I0907 14:35:07.593504 49407 Util.cpp:144] commandline: /home/hadoop/paddle/paddle/build/bin/../opt/paddle/bin/paddle_trainer --config=vgg_16_cifar.py --dot_period=10 --log_period=100 --test_all_data_in_one_period=1 --use_gpu=1 --trainer_count=1 --num_passes=200 --save_dir=./cifar_vgg_model I0907 14:35:08.002375 49407 Util.cpp:113] Calling runInitFunctions I0907 14:35:08.002609 49407 Util.cpp:126] Call runInitFunctions done. [INFO 2016-09-07 14:35:08,043 layers.py:1438] channels=3 size=3072 [INFO 2016-09-07 14:35:08,043 layers.py:1438] output size for conv_0 is 32 [INFO 2016-09-07 14:35:08,044 layers.py:1438] channels=64 size=65536 [INFO 2016-09-07 14:35:08,045 layers.py:1438] output size for conv_1 is 32 [INFO 2016-09-07 14:35:08,046 layers.py:1499] output size for pool_0 is 16_16 [INFO 2016-09-07 14:35:08,046 layers.py:1438] channels=64 size=16384 [INFO 2016-09-07 14:35:08,046 layers.py:1438] output size for conv_2 is 16 [INFO 2016-09-07 14:35:08,047 layers.py:1438] channels=128 size=32768 [INFO 2016-09-07 14:35:08,048 layers.py:1438] output size for conv_3 is 16 [INFO 2016-09-07 14:35:08,049 layers.py:1499] output size for pool_1 is 8_8 [INFO 2016-09-07 14:35:08,049 layers.py:1438] channels=128 size=8192 [INFO 2016-09-07 14:35:08,049 layers.py:1438] output size for conv_4 is 8 [INFO 2016-09-07 14:35:08,051 layers.py:1438] channels=256 size=16384 [INFO 2016-09-07 14:35:08,051 layers.py:1438] output size for conv_5 is 8 [INFO 2016-09-07 14:35:08,052 layers.py:1438] channels=256 size=16384 [INFO 2016-09-07 14:35:08,052 layers.py:1438] output size for conv_6 is 8 [INFO 2016-09-07 14:35:08,053 layers.py:1499] output size for pool_2 is 4_4 [INFO 2016-09-07 14:35:08,054 layers.py:1438] channels=256 size=4096 [INFO 2016-09-07 14:35:08,054 layers.py:1438] output size for conv_7 is 4 [INFO 2016-09-07 14:35:08,055 layers.py:1438] channels=512 size=8192 [INFO 2016-09-07 14:35:08,055 layers.py:1438] output size for conv_8 is 4 [INFO 2016-09-07 14:35:08,056 layers.py:1438] channels=512 size=8192 [INFO 2016-09-07 14:35:08,056 layers.py:1438] output size for conv_9 is 4 [INFO 2016-09-07 14:35:08,058 layers.py:1499] output size for pool_3 is 2_2 [INFO 2016-09-07 14:35:08,058 layers.py:1499] output size for pool_4 is 1_1 [INFO 2016-09-07 14:35:08,060 networks.py:1122] The input order is [image, label] [INFO 2016-09-07 14:35:08,060 networks.py:1129] The output order is [cost_0] I0907 14:35:08.067443 49407 Trainer.cpp:169] trainer mode: Normal I0907 14:35:08.075389 49407 PyDataProvider2.cpp:219] loading dataprovider image_provider::processData [INFO 2016-09-07 14:35:08,109 image_provider.py:52] Image size: 32 [INFO 2016-09-07 14:35:08,109 image_provider.py:53] Meta path: data/cifar-out/batches/batches.meta [INFO 2016-09-07 14:35:08,109 image_provider.py:58] DataProvider Initialization finished I0907 14:35:08.109668 49407 PyDataProvider2.cpp:219] loading dataprovider image_provider::processData [INFO 2016-09-07 14:35:08,109 image_provider.py:52] Image size: 32 [INFO 2016-09-07 14:35:08,109 image_provider.py:53] Meta path: data/cifar-out/batches/batches.meta [INFO 2016-09-07 14:35:08,109 image_provider.py:58] DataProvider Initialization finished I0907 14:35:08.109978 49407 GradientMachine.cpp:134] Initing parameters.. I0907 14:35:08.554066 49407 GradientMachine.cpp:141] Init parameters done. Current Layer forward/backward stack is LayerName: batch_norm_10 LayerName: fc_layer_0 LayerName: dropout_0 LayerName: pool_4 LayerName: pool_3 LayerName: batch_norm_9 LayerName: conv_9 LayerName: batch_norm_8 LayerName: conv_8 LayerName: batch_norm_7 LayerName: conv_7 LayerName: pool_2 LayerName: batch_norm_6 LayerName: conv_6 LayerName: batch_norm_5 LayerName: conv_5 LayerName: batch_norm_4 LayerName: conv_4 LayerName: pool_1 LayerName: batch_norm_3 LayerName: conv_3 LayerName: batch_norm_2 LayerName: conv_2 LayerName: pool_0 LayerName: batch_norm_1 LayerName: conv_1 LayerName: batch_norm_0 LayerName: conv_0 LayerName: image *_* Aborted at 1473230129 (unix time) try "date -d @1473230129" if you are using GNU date *** Current Layer forward/backward stack is PC: @ 0x7fb72227a855 (unknown) Current Layer forward/backward stack is
* SIGSEGV (@0x130701aa00) received by PID 49407 (TID 0x7fb7386fe800) from PID 117549568; stack trace: *
Current Layer forward/backward stack is @ 0x7fb737fdf100 (unknown) Current Layer forward/backward stack is @ 0x7fb72227a855 (unknown) Current Layer forward/backward stack is @ 0x8b3350 hl_batch_norm_backward() Current Layer forward/backward stack is @ 0x5d4684 paddle::CudnnBatchNormLayer::backward() Current Layer forward/backward stack is @ 0x620bae paddle::NeuralNetwork::backward() Current Layer forward/backward stack is @ 0x69c95d paddle::TrainerInternal::forwardBackwardBatch() Current Layer forward/backward stack is @ 0x69cf14 paddle::TrainerInternal::trainOneBatch() Current Layer forward/backward stack is @ 0x698350 paddle::Trainer::trainOnePass() Current Layer forward/backward stack is @ 0x69ba47 paddle::Trainer::train() Current Layer forward/backward stack is @ 0x53aea3 main Current Layer forward/backward stack is @ 0x7fb73587bb15 __libc_start_main Current Layer forward/backward stack is @ 0x545b15 (unknown) /home/hadoop/paddle/paddle/build/bin/paddle: line 46: 49407 Segmentation fault (core dumped) ${DEBUGGER} $MYDIR/../opt/paddle/bin/paddle_trainer ${@:2} No data to plot. Exiting!Someone know why?