Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #44

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 9月 07, 2016 by saxon_zh@saxon_zhGuest

Getting hl_matrix_classification_error if using trainer_config settings.batch_size > 16

Created by: F0REacH

Can't run train.sh if trainer_config.py settings batch_size > 16. Getting following error: train.log:

./train.sh I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/utils/Util.cpp:144] commandline: /opt/paddle/bin/../opt/paddle/bin/paddle_trainer --config=trainer_config.py --save_dir=./model_output --job=train --use_gpu=true --trainer_count=1 --num_passes=100000 --log_period=15 --dot_period=1 --show_parameter_stats_period=100 --test_all_data_in_one_period=1 --saving_period=100 --test_period=100 I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/utils/Util.cpp:113] Calling runInitFunctions I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/utils/Util.cpp:126] Call runInitFunctions done. [INFO 2016-09-06 20:10:47,439 networks.py:1122] The input order is [input, label] [INFO 2016-09-06 20:10:47,439 networks.py:1129] The output order is [cost_0] I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/trainer/Trainer.cpp:169] trainer mode: Normal I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/dataproviders/PyDataProvider2.cpp:219] loading dataprovider dataprovider::process I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/dataproviders/PyDataProvider2.cpp:219] loading dataprovider dataprovider::process I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/gradientmachines/GradientMachine.cpp:134] Initing parameters.. I /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/gradientmachines/GradientMachine.cpp:141] Init parameters done. F /home/user/SOFT/BAIDU/PADDLE/Paddle/paddle/cuda/src/hl_cuda_matrix.cu:322] 0x933ba8[hl_matrix_classification_error] CUDA error: invalid configuration argument /opt/paddle/bin/paddle: line 46: 10921 Aborted (core dumped) ${DEBUGGER} $MYDIR/../opt/paddle/bin/paddle_trainer ${@:2}

I'm trying to solve clasification task with LSTM model. My dataset is 180 examples, each is roughly 5000 timesteps (variable length). Each timestep is len=24 float vector labeled with int label in range [0, 132].

settings.input_types = [
    dense_vector_sequence(settings.inputSize),
    integer_value_sequence(settings.vocabSize)]

Smaller size batches eg. 12 give no error, but my data is not very redundant, so gradients become unstable. My setup is 980ti (6Gb VRAM) memory usage for batch_size=12 is ~ 20%. trainer_config.py: settings( batch_size=24, learning_rate=0.001, learning_method=RMSPropOptimizer() ) stacked_lstm_net(input_dim=24, class_dim=133, hid_dim=24, stacked_num=7, is_predict=is_predict)

stacked_lstm_net # simple sequential lstm

lstm_act = TanhActivation()
fc_act = LinearActivation()

data = data_layer("input", size=input_dim)

fc1 = fc_layer(input=data, size=hid_dim, act=fc_act)
lstm1 = lstmemory(input=fc1, act=lstm_act)

inputs = [fc1, lstm1]
for i in range(2, stacked_num + 1):
    fc = fc_layer(input=inputs, size=hid_dim, act=fc_act)
    lstm = lstmemory(input=fc, act=lstm_act)
    inputs = [fc, lstm]

output = fc_layer(input=[inputs[0], inputs[1]], size=class_dim,
                  act=SoftmaxActivation())

if is_predict:
    outputs(output)
else:
    outputs(classification_cost(input=output, label=data_layer('label', class_dim)))

Could you please explain this error or point me how to debug such issue?

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#44
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7