Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #3796

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 9月 01, 2017 by saxon_zh@saxon_zhGuest

how to manage DeviceContext which contains cuda streams

Created by: QiJune

When launching a kernel in CUDA, we have to set a specific CUDA stream. We have implement DeviceContext which has a CUDA stream. Copy and operator run job will launch a CUDA kernel. So we have to pass a DeviceContext parameter to Copy and Operator job. In user end, users will only set CPU or several GPU ids to run network training, they are not aware of DeviceContext. So, we have to implement a DeviceContextManager to initialize some DeviceContext at first, and schedule the CDUA kernels.

And OperatorBase may need another run interface,

class OperatorBase {
  void Run(Place p);
  void Run(Scope, DeviceContext);
};

The first Run interface is to users, they will only need to set a place, and paddle will pass the DeviceContext to the second Run interface.

It's the same with copy jobs. A specific CUDA stream will pass to a copy job and it's scheduled by DeviceContextManager.

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#3796
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7