Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #3336

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 8月 08, 2017 by saxon_zh@saxon_zhGuest

python api训练过程报错

Created by: bushidonggua

按照demo修改数据集和验证集: demo源码路径:https://github.com/PaddlePaddle/models/blob/develop/image_classification/

错误:

[INFO 2017-08-08 19:47:42,445 layers.py:2255] output for __conv_0__: c = 96, h = 54, w = 54, size = 279936
[INFO 2017-08-08 19:47:42,447 layers.py:2380] output for __pool_0__: c = 96, h = 27, w = 27, size = 69984
[INFO 2017-08-08 19:47:42,448 layers.py:2255] output for __conv_1__: c = 256, h = 27, w = 27, size = 186624
[INFO 2017-08-08 19:47:42,450 layers.py:2380] output for __pool_1__: c = 256, h = 13, w = 13, size = 43264
[INFO 2017-08-08 19:47:42,451 layers.py:2255] output for __conv_2__: c = 384, h = 13, w = 13, size = 64896
[INFO 2017-08-08 19:47:42,453 layers.py:2255] output for __conv_3__: c = 384, h = 13, w = 13, size = 64896
[INFO 2017-08-08 19:47:42,454 layers.py:2255] output for __conv_4__: c = 256, h = 13, w = 13, size = 43264
[INFO 2017-08-08 19:47:42,455 layers.py:2380] output for __pool_2__: c = 256, h = 6, w = 6, size = 9216
I0808 19:47:42.893196 18189 GradientMachine.cpp:85] Initing parameters..
I0808 19:47:48.673799 18189 GradientMachine.cpp:92] Init parameters done.

Pass 0, Batch 0, Cost 19.511793, {'classification_error_evaluator': 0.9921875}

Pass 0, Batch 1, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 2, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 3, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 4, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 5, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 6, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 7, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 8, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 9, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 10, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 11, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 12, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 13, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 14, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 15, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 16, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 17, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 18, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 19, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 20, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 21, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 22, Cost 0.000000, {'classification_error_evaluator': 0.0}

Pass 0, Batch 23, Cost 10.500000, {'classification_error_evaluator': 0.1640625}

Pass 0, Batch 24, Cost 41.500000, {'classification_error_evaluator': 0.6484375}

Pass 0, Batch 25, Cost 22.000000, {'classification_error_evaluator': 0.34375}
Thread [140078791661312] Forwarding __fc_layer_1__, 
*** Aborted at 1502194420 (unix time) try "date -d @1502194420" if you are using GNU date ***
PC: @                0x0 (unknown)
*** SIGFPE (@0x7f669a15806f) received by PID 18189 (TID 0x7f66a29e1700) from PID 18446744071999684719; stack trace: ***
    @     0x7f66a25b8160 (unknown)
    @     0x7f669a15806f mkl_blas_avx_sgemm_kernel_0
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#3336
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7