Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #3212

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 8月 03, 2017 by saxon_zh@saxon_zhGuest

CNN输入term序列和postag序列,可以正常训练,predict时出错: Check failed: index[i] < (int)tableSize

Created by: stonyhu

e795396831b82bb879d45b7cf5ce1550

CNN网络配置的脚本如下

# edit-mode: -*- python -*-
import numpy as np
from paddle.trainer_config_helpers import *

emb_file = "/home/disk/xiejian01/word2vec/data/embedding-vector.txt.128.freq2"
dict_file = "./data/dict.txt"
word_dict = dict()
pos_dict = dict()
word_idx = 0
pos_idx = 0
with open(dict_file, 'r') as f:
    for i, line in enumerate(f):
        parts = line.strip().split('\t\t')
        if parts[1].startswith("nerl_in_query"):
            pos_dict[parts[1]] = pos_idx
            pos_idx += 1
        if parts[1].startswith("nerl_wordseg"):
            word_dict[parts[1]] = word_idx
            word_idx += 1
word_dict["<unk>"] = len(word_dict)
pos_dict["<unk>"] = len(pos_dict)
word_dim = len(word_dict)
pos_dim = len(pos_dict)

is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'
define_py_data_sources2(
    train_list=trn,
    test_list=tst,
    module="dataprovider_emb",
    obj=process,
    args={"dict_file": dict_file})

batch_size = 512 if not is_predict else 1
settings(
    batch_size=batch_size,
    learning_rate=2e-3,
    learning_method=AdamOptimizer(),
    regularization=L2Regularization(8e-4),
    gradient_clipping_threshold=25)

def load_parameter(filename=emb_file, height=word_dim, width=128):
    return np.loadtxt(open(filename), dtype=np.float32, delimiter=" ")

word = data_layer(name="word", size=word_dim)
emb_param = ParameterAttribute(
                        name="emb_param", 
                        initial_std=0., 
                        is_static=False, 
                        initializer=load_parameter)
word_emb = embedding_layer(input=word, size=128, param_attr=emb_param)

pos = data_layer(name="postag", size=pos_dim)
pos_emb = embedding_layer(input=pos, size=32)

embedding = concat_layer(input=[word_emb, pos_emb])

conv3 = sequence_conv_pool(input=embedding, context_len=3, hidden_size=128)
conv4 = sequence_conv_pool(input=embedding, context_len=4, hidden_size=128)
conv5 = sequence_conv_pool(input=embedding, context_len=5, hidden_size=128)

output = fc_layer(input=[conv3, conv4, conv5], size=2, act=SoftmaxActivation())

if is_predict:
    maxid = maxid_layer(output)
    outputs([maxid, output])
else:
    label = data_layer(name="label", size=2)
    cls = classification_cost(input=output, label=label)
    outputs(cls)

读取dict和训练样本的脚本如下

#!/usr/bin/env python
# -*- coding: utf8 -*-

from paddle.trainer.PyDataProvider2 import *

def initializer(settings, dict_file, **kwargs):
    word_dict = {}
    pos_dict = {}
    word_idx = 0
    pos_idx = 0
    with open(dict_file, 'r') as f:
        for i, line in enumerate(f):
            parts = line.strip().split('\t\t')
            if len(parts) != 2:
                continue
            if parts[1].startswith("nerl_in_query"):
                word_dict[parts[1]] = word_idx
                word_idx += 1
            if parts[1].startswith("nerl_wordseg"):
                pos_dict[parts[1]] = pos_idx
                pos_idx += 1
    word_dict["<unk>"] = len(word_dict)
    pos_dict["<unk>"] = len(pos_dict)
    settings.word_dict = word_dict
    settings.pos_dict = pos_dict
    settings.input_types = [
        integer_value_sequence(len(word_dict)),
        integer_value_sequence(len(pos_dict)),
        integer_value(2)
    ]

@provider(init_hook=initializer, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
    UNK_POS = settings.pos_dict.get("<unk>")
    UNK_WORD = settings.word_dict.get("<unk>")
    with open(file_name, 'r') as f:
        for line in f:
            line = line.strip()
            parts = line.split('\t\t')
            if len(parts) != 3:
                continue
            label = parts[0]
            feature_types = parts[2].split('\t')
            word_vector = []
            pos_vector = []
            for feature_type in feature_types:
                _index = feature_type.find(':')
                extractor_name = feature_type[:_index]
                feature_line = feature_type[_index+1:]
                if feature_line == '':
                    continue
                features = feature_line.split('\x01')
                for feature in features:
                    w = extractor_name + "::" + feature
                    if extractor_name == "nerl_in_query":
                        pos_vector.append(settings.pos_dict.get(w, UNK_POS))
                    if extractor_name == "nerl_wordseg":
                        word_vector.append(settings.word_dict.get(w, UNK_POS))
            if len(word_vector) == 0:
                continue
            yield word_vector, pos_vector, int(label)

def predict_initializer(settings, dict_file, **kwargs):
    word_dict = {}
    pos_dict = {}
    word_idx = 0
    pos_idx = 0
    with open(dict_file, 'r') as f:
        for i, line in enumerate(f):
            parts = line.strip().split('\t\t')
            if len(parts) != 2:
                continue
            if parts[1].startswith("nerl_in_query"):
                word_dict[parts[1]] = word_idx
                word_idx += 1
            if parts[1].startswith("nerl_wordseg"):
                pos_dict[parts[1]] = pos_idx
                pos_idx += 1
    word_dict["<unk>"] = len(word_dict)
    pos_dict["<unk>"] = len(pos_dict)
    settings.word_dict = word_dict
    settings.pos_dict = pos_dict
    settings.input_types = [
        integer_value_sequence(len(word_dict)),
        integer_value_sequence(len(pos_dict))
    ]

@provider(init_hook=predict_initializer, should_shuffle=False)
def process_predict(settings, file_name):
    UNK_POS = settings.pos_dict.get("<unk>")
    UNK_WORD = settings.word_dict.get("<unk>")
    with open(file_name, 'r') as f:
        for line in f:
            line = line.strip()
            parts = line.split('\t\t')
            if len(parts) != 2:
                yield [UNK_WORD], [UNK_POS]
                continue
            query = parts[0]
            feature_types = parts[1].split('\t')
            word_vector = []
            pos_vector = []
            for feature_type in feature_types:
                _index = feature_type.find(':')
                extractor_name = feature_type[:_index]
                feature_line = feature_type[_index+1:]
                if feature_line == '':
                    continue
                features = feature_line.split('\x01')
                for feature in features:
                    w = extractor_name + "::" + feature
                    if extractor_name == "nerl_in_query":
                        pos_vector.append(settings.pos_dict.get(w, UNK_POS))
                    if extractor_name == "nerl_wordseg":
                        word_vector.append(settings.word_dict.get(w, UNK_WORD))
            if len(word_vector) == 0:
                pos_vector.append(UNK_POS)
                word_vector.append(UNK_WORD)
            yield word_vector, pos_vector
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#3212
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7