Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #3091

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
接近 2 年 前同步成功

通知 2320
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 7月 28, 2017 by saxon_zh@saxon_zhGuest

SRL任务中CRF-layer使用gpu训练出core

Created by: April1010

完整错误信息如下:

I0728 02:02:37.545069    20 GradientMachine.cpp:85] Initing parameters..
I0728 02:02:53.995805    20 GradientMachine.cpp:92] Init parameters done.
F0728 02:02:54.171394    20 CRFLayer.cpp:57] Check failed: !useGpu_ GPU is not supported
*** Check failure stack trace: ***
    @     0x7fce5af63b6d  google::LogMessage::Fail()
    @     0x7fce5af65eb8  google::LogMessage::SendToLog()
    @     0x7fce5af6367b  google::LogMessage::Flush()
    @     0x7fce5af66d8e  google::LogMessageFatal::~LogMessageFatal()
    @     0x7fce5ac07402  paddle::CRFLayer::forward()
    @     0x7fce5ac4074f  paddle::NeuralNetwork::forward()
    @     0x7fce5af336d0  GradientMachine::forwardBackward()
    @     0x7fce5aaae6a4  _wrap_GradientMachine_forwardBackward
    @           0x4cb45e  PyEval_EvalFrameEx
    @           0x4c2765  PyEval_EvalCodeEx
    @           0x4ca8d1  PyEval_EvalFrameEx
    @           0x4c2765  PyEval_EvalCodeEx
    @           0x4ca099  PyEval_EvalFrameEx
    @           0x4c2765  PyEval_EvalCodeEx
    @           0x4ca099  PyEval_EvalFrameEx
    @           0x4c2765  PyEval_EvalCodeEx
    @           0x4ca8d1  PyEval_EvalFrameEx
    @           0x4c2765  PyEval_EvalCodeEx
    @           0x4c2509  PyEval_EvalCode
    @           0x4f1def  (unknown)
    @           0x4ec652  PyRun_FileExFlags
    @           0x4eae31  PyRun_SimpleFileExFlags
    @           0x49e14a  Py_Main
    @     0x7fce9bce5830  __libc_start_main
    @           0x49d9d9  _start
    @              (nil)  (unknown)
Aborted (core dumped)

网络配置如下(基本和book中LSTM模型的SRL任务一致):

paddle.init(trainer_count=args.trainer_count)


stag_dict_size=data_reader.get_dict_size('stag_dict')
word_dict_size=data_reader.get_dict_size('word_dict')
label_dict_size=data_reader.get_dict_size('label_dict')
mix_hidden_lr=args.mix_hidden_lr
default_std=args.default_std
hidden_dim=args.hidden_dim
word_dim=args.word_dim
mark_dim=args.mark_dim
stag_dim=args.stag_dim
num_lstm_layers=args.num_lstm_layers

word = paddle.layer.data(name = 'word_data', type = d_type(word_dict_size))
predicate = paddle.layer.data(name='predicate_data', type=d_type(word_dict_size))
ctx_n2 = paddle.layer.data(name = 'ctx_n2_data', type = d_type(word_dict_size))
ctx_n1 = paddle.layer.data(name = 'ctx_n1_data', type = d_type(word_dict_size))
ctx_0 = paddle.layer.data(name = 'ctx_0_data', type = d_type(word_dict_size))
ctx_p1 = paddle.layer.data(name = 'ctx_p1_data', type = d_type(word_dict_size))
ctx_p2 = paddle.layer.data(name = 'ctx_p2_data', type = d_type(word_dict_size))
mark = paddle.layer.data(name='mark_data', type=d_type(mark_dict_size))
word_stag = paddle.layer.data(name='word_stag_data', type=d_type(stag_dict_size))
emb_para = paddle.attr.Param(name='emb', initial_std=0., is_static = False)
std_0 = paddle.attr.Param(initial_std=0.)
std_default = paddle.attr.Param(initial_std=default_std)


predicate_embedding = paddle.layer.embedding(
    size=word_dim,
    input=predicate,
    param_attr=paddle.attr.Param(name='vemb', initial_std=default_std))
mark_embedding = paddle.layer.embedding(
    size=mark_dim, input=mark, param_attr=std_0)
word_stag_embedding = paddle.layer.embedding(
    size=stag_dim, input=word_stag, param_attr=std_0)

word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
    paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para)
    for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(word_stag_embedding)
emb_layers.append(mark_embedding)
hidden_0 = paddle.layer.mixed(
    size = hidden_dim,
    bias_attr = std_default,
    input = [
        paddle.layer.full_matrix_projection(
            input = emb, param_attr = std_default) for emb in emb_layers
    ])

lstm_para_attr = paddle.attr.Param(initial_std = 0.0, learning_rate = 1.0)
hidden_para_attr = paddle.attr.Param(
    initial_std = default_std, learning_rate = mix_hidden_lr)

lstm_0 = paddle.layer.lstmemory(
    input = hidden_0,
    act = paddle.activation.Tanh(),
    gate_act = paddle.activation.Sigmoid(),
    state_act = paddle.activation.Tanh(),
    bias_attr = std_0,
    param_attr = lstm_para_attr)

#stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]

for i in range(1, num_lstm_layers):
    mix_hidden = paddle.layer.mixed(
        size = hidden_dim,
        bias_attr = std_default,
        input = [
            paddle.layer.full_matrix_projection(
                input = input_tmp[0], param_attr = hidden_para_attr),
            paddle.layer.full_matrix_projection(
                input = input_tmp[1], param_attr = lstm_para_attr)
        ])

    lstm = paddle.layer.lstmemory(
        input = mix_hidden,
        act = paddle.activation.Tanh(),
        gate_act = paddle.activation.Sigmoid(),
        state_act = paddle.activation.Tanh(),
        reverse = ((i % 2) == 1),
        bias_attr = std_0,
        param_attr = lstm_para_attr)

    input_tmp = [mix_hidden, lstm]

feature_out = paddle.layer.mixed(
    size = label_dict_size,
    bias_attr = std_default,
    input = [
        paddle.layer.full_matrix_projection(
            input = input_tmp[0], param_attr = hidden_para_attr),
        paddle.layer.full_matrix_projection(
            input = input_tmp[1], param_attr = lstm_para_attr)
    ], )

target = paddle.layer.data(name='target', type=d_type(data_reader.get_dict_size('label_dict')))
crf_cost = paddle.layer.crf(
    size=data_reader.get_dict_size('label_dict'),
    input=feature_out,
    label=target,
    param_attr=paddle.attr.Param(
        name='crfw', initial_std=args.default_std, learning_rate=args.mix_hidden_lr))

crf_dec = paddle.layer.crf_decoding(
    size=data_reader.get_dict_size('label_dict'),
    input=feature_out,
    label=target,
    param_attr=paddle.attr.Param(name='crfw'))
evaluator.sum(input=crf_dec)

def load_parameter(file_name, h, w):
    with open(file_name, 'rb') as f:
        return np.fromfile(f, dtype = np.float32).reshape(h, w)

parameters = paddle.parameters.create(crf_cost)

optimizer = paddle.optimizer.Momentum(
    momentum=0,
    learning_rate=2e-2,
    regularization=paddle.optimizer.L2Regularization(rate=8e-4),
    model_average=paddle.optimizer.ModelAverage(
        average_window=0.5, max_average_window=10000), )

is_local_flag=True if args.is_local > 0 else False
train_batch_reader = paddle.batch(\
        paddle.reader.shuffle(data_reader.get_train_reader(is_local_flag), buf_size=8192), \
            batch_size=args.batch_size)
test_batch_reader=paddle.batch(data_reader.get_test_reader(is_local_flag), batch_size=args.batch_size)
feeding=data_reader.data_name_feeding()

trainer = paddle.trainer.SGD(
    cost=crf_cost,
    parameters=parameters,
    update_equation=optimizer,
    extra_layers=crf_dec)
trainer.train(
    reader=train_batch_reader,
    event_handler=event_handler,
    num_passes=args.num_passes,
    feeding=feeding)
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#3091
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7