outputs设置多个loss,最终log中输出的loss是什么
Created by: colin1988
模型配置中output输出多个loss,代码如下:
seq_loss = cross_entropy(input = seq_label, label = target)
crf_l = crf_layer(
name='crf',
size=label_dict_len,
input=feat,
label=target,
param_attr=ParameterAttribute(
name='crfw', learning_rate=mix_hidden_lr))
outputs(seq_loss, crf_l)
训练日志中输出单个loss Batch=3990 samples=598500 AvgCost=1.87198 CurrentCost=1.91031 Eval: sum_evaluator_0=0.0453391 CurrentEval: sum_evaluator_0=0.0440848
请问log输出的单个loss是如何通过outputs中设置的多个loss计算出来的,优化又是如何进行的?