paddle老版配置和新版paddle的网络配置兼容吗?
Created by: liujinke
新版paddle的配置写法有变化 想问一下现在的paddle支持以前第一版的配置方式吗 兼容吗? 需要我做哪些修改才能在新的paddle版本上使用。多谢! 我的老版配置如下:
################################### Data Configuration ###################################
TrainData(ProtoData(files = "train.list"))
################################### Algorithm Configuration ###################################
Settings(
learning_rate_decay_a=1e-05,
learning_rate_decay_b=0.0,
learning_rate=0.1,
batch_size=400,
algorithm='sgd',
num_batches_per_send_parameter=1,
num_batches_per_get_parameter=1,
#learning_method='adam',
learning_method='adadelta',
ada_epsilon=1e-6,
ada_rou=0.95
)
################################### Network Configuration ###################################
Layer(type = "data", name = "spa", size = 664)
Layer(type = "data", name = "cont", size = 571)
Layer(inputs = Input("spa", initial_std = 0.047), name = "hidspa", active_type = "relu", type = "fc", size =256 )
Layer(inputs = Input("cont", initial_std = 0.0568), name = "hidcont", active_type = "relu", type = "fc", size =256 )
Layer(inputs = [Input("hidspa", initial_std = 0.088), Input("hidcont", initial_std = 0.088)], name = "hid1", active_type = "tanh", type = "fc", size =256 )
Layer(inputs = Input("hid1", initial_std = 0.088), name = "hid2", active_type = "tanh", type = "fc", size =256 )
Layer(inputs = [Input("hid1"), Input("hid2")], name = "hid12", bias = Bias(parameter_name = "addto_layer.bias"), active_type = "relu", type = "addto" )
Layer(inputs = Input("hid12", initial_std = 0.088), name = "output", active_type = "softmax", type = "fc", size = 2 )
Layer(type = "data", name = "label", size = 1)
Layer(inputs = [Input("output"), Input("label")], type = "multi-class-cross-entropy", name = "cost")
#Layer(inputs = [Input("output"), Input("label")], type = "huber", name = "cost")
Layer(inputs = [Input("output"), Input("label")], type = "auc-validation", name = "auc")
Inputs("spa", "cont", "label")
Outputs("cost")
Evaluator(inputs = ["output", "label"],name = "precision_recall_1",type = "precision_recall", positive_label = 1)