Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #27629

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
接近 2 年 前同步成功

通知 2320
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
You need to sign in or sign up before continuing.
已关闭
开放中
Opened 9月 27, 2020 by saxon_zh@saxon_zhGuest

奇怪的错误

Created by: shaoshenchen

环境:AI Studio高级版

错误

TypeError: conv2d(): incompatible function arguments. The following argument types are supported:
    1. (arg0: paddle::imperative::VarBase, arg1: paddle::imperative::VarBase, *args) -> paddle::imperative::VarBase

Invoked with: <paddle.fluid.core_avx.VarBase object at 0x7f04dd29bf70>, name: "conv2d_0.w_0"
type {
  type: LOD_TENSOR
  lod_tensor {
    tensor {
      data_type: FP32
      dims: 32
      dims: 3
      dims: 3
      dims: 3
    }
  }
}
persistable: true
, 'strides', [1, 1], 'paddings', [1, 1], 'dilations', [1, 1], 'groups', 1, 'use_cudnn', True

代码

import paddle
import paddle.fluid as fluid
import numpy as np
from paddle.fluid.dygraph import Conv2D, Pool2D, Linear, BatchNorm
from paddle.fluid.layers import softmax, cross_entropy, mean, accuracy
from paddle.fluid.optimizer import AdamOptimizer
from visualdl import LogWriter

cfg = {
    "batch_size": 128,
    "epoch_num": 20,
    "learning_rate": 1e-4,
    "save_model_dir": "model/MiniVGG"
}

train_reader = paddle.batch(
    fluid.io.shuffle(
        paddle.dataset.cifar.train100(), 5000), 
        batch_size=cfg["batch_size"], drop_last=True)

test_reader = paddle.batch(
    fluid.io.shuffle(
        paddle.dataset.cifar.test100(), 5000), 
        batch_size=cfg["batch_size"], drop_last=True)


class MiniVGG(fluid.dygraph.Layer):
    def __init__(self):
        super().__init__()
        self.conv_layers = [32, 64, 128]
        self.fc_layers = [1024, 1024]
        # (3, 32, 32)
        self._conv1_1 = Conv2D(num_channels=3, num_filters=self.conv_layers[0], filter_size=3, padding=1)
        self._conv1_2 = Conv2D(num_channels=self.conv_layers[0], num_filters=self.conv_layers[0], filter_size=3, padding=1)
        self._pool1 = Pool2D(pool_size=2, pool_stride=2)

        # (32, 16, 16)
        self._conv2_1 = Conv2D(num_channels=self.conv_layers[0], num_filters=self.conv_layers[1], filter_size=3, padding=1)
        self._conv2_2 = Conv2D(num_channels=self.conv_layers[1], num_filters=self.conv_layers[1], filter_size=3, padding=1)
        self._pool2 = Pool2D(pool_size=2, pool_stride=2)

        # (64, 8, 8)
        self._conv3_1 = Conv2D(num_channels=self.conv_layers[1], num_filters=self.conv_layers[2], filter_size=3, padding=1)
        self._conv3_2 = Conv2D(num_channels=self.conv_layers[2], num_filters=self.conv_layers[2], filter_size=3, padding=1)
        self._conv3_3 = Conv2D(num_channels=self.conv_layers[2], num_filters=self.conv_layers[2], filter_size=3, padding=1)
        self._pool3 = Pool2D(pool_size=2, pool_stride=2)

        # (128, 4, 4)
        self._bn = BatchNorm(self.conv_layers[2])
        self._fc1 = Linear(self.conv_layers[2]*4*4, self.fc_layers[0], act="relu")
        self._fc2 = Linear(self.fc_layers[0], self.fc_layers[1], act="relu")
        self._fc3 = Linear(self.fc_layers[1], 100, act="softmax")

    def forward(self, x):
        x = self._conv1_1(x)
        x = self._conv1_2(x)
        x = self._pool1(x)

        x = self._conv2_1(x)
        x = self._conv2_2(x)
        x = self._pool2(x)

        x = self._conv3_1(x)
        x = self._conv3_2(x)
        x = self._conv3_3(x)
        x = self._pool3(x)
        
        x = self._bn(x)
        x = fluid.layers.reshape(x, [-1, self.conv_layers[2]*4*4])
        x = self._fc1(x)
        x = self._fc2(x)
        x = self._fc3(x)

        return x

writer = LogWriter("log")

vdl_count1 = 0
vdl_count2 = 0
vgg = MiniVGG()    # 模型
with fluid.dygraph.guard(fluid.CUDAPlace(0)):
    for epoch in range(cfg["epoch_num"]):
        for batch_id, data in enumerate(train_reader()):
            # 定义数据(define)
            img = fluid.dygraph.to_variable(
                np.array(
                    [x[0].reshape(3, 32, 32) for x in data]
                ).astype(np.float32)
            )
            label = fluid.dygraph.to_variable(
                np.array(
                    [y[1] for y in data]
                ).astype(np.int64).reshape(-1, 1)
            )
            # 前向计算(forward)
            pred = vgg(img)
            pred = fluid.layers.reshape(pred, [-1, 100])
            # 损失函数(loss)
            loss = cross_entropy(pred, label)
            loss = fluid.layers.mean(loss)
            loss.backward()
            acc = fluid.layers.accuracy(pred, label)
            # 优化(backward)
            adam = AdamOptimizer(    # 优化器
                learning_rate=cfg["learning_rate"], 
                parameter_list=vgg.parameters())  
            adam.minimize(loss)    
            vgg.clear_gradients()
            if batch_id % 50 == 0:
                print("Epoch {0}   Batch {1}   Loss{2}   Acc{3}".format(
                    epoch, batch_id, loss.numpy(), acc.numpy()))
                writer.add_scalar(tag="Train/loss", step=vdl_count1, value=loss.numpy()[0])
                writer.add_scalar(tag="Train/acc", step=vdl_count1, value=acc.numpy()[0])
                vdl_count1 += 1

        # 评估           
        loss_list = list()
        acc_list = list()         
        for batch_id, data in enumerate(test_reader()):
            img = fluid.dygraph.to_variable(
                np.array(
                    [x[0].reshape(3, 32, 32) for x in data]
                ).astype(np.float32))
            label = fluid.dygraph.to_variable(
            np.array(
                    [y[1] for y in data]
                ).astype(np.int64).reshape(-1, 1))
            # forward
            pred = vgg(img)
            # loss
            loss = cross_entropy(pred, label)
            loss = mean(loss)
            acc = accuracy(pred, label)
            if batch_id % 10 == 0:
                writer.add_scalar(tag="Test/loss", step=vdl_count2, value=loss.numpy()[0])
                writer.add_scalar(tag="Test/acc", step=vdl_count2, value=acc.numpy()[0])
                vdl_count2 += 1
            # 记录loss和acc
            loss_list.append(loss.numpy()[0])
            acc_list.append(acc.numpy()[0])

        print("Eval ———— Loss {}   Acc {}\n".format(
            float(np.array(loss_list).mean()), float(np.array(acc_list).mean())))

    state_dict = vgg.state_dict()
    fluid.save_dygraph(state_dict, cfg["save_model_dir"])
    print("Save dygraph succeed!")

解决办法

重新运行一次出错的代码即可。出错的原因尽然是“出错”?不可思议~哪位RD小哥哥能解答一下

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#27629
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7