[论文复现]脚本环境多卡训练报错
Created by: thrkingd
为使您的问题得到快速解决,在建立Issues前,请您先通过如下方式搜索是否有相似问题:【搜索issue关键字】【使用labels筛选】【官方文档】
如果您没有查询到相似问题,为快速解决您的提问,建立issue时请提供如下细节信息:
- 标题:简洁、精准概括您的问题,例如“Insufficient Memory xxx" ”
- 版本、环境信息: 1)PaddlePaddle版本:1.7.2(1.8.2的版本选择不了,系统报错) 2)系统环境:脚本多卡环境(选的4卡的环境) 运行时报错如下:
C++ Call Stacks (More useful to developers):
0 std::string paddle::platform::GetTraceBackString<char const*>(char const*&&, char const*, int) 1 paddle::platform::EnforceNotMet::EnforceNotMet(std::__exception_ptr::exception_ptr, char const*, int) 2 paddle::operators::CUDNNConvGradOpKernel::Compute(paddle::framework::ExecutionContext const&) const 3 std::_Function_handler<void (paddle::framework::ExecutionContext const&), paddle::framework::OpKernelRegistrarFunctor<paddle::platform::CUDAPlace, false, 0ul, paddle::operators::CUDNNConvGradOpKernel, paddle::operators::CUDNNConvGradOpKernel >::operator()(char const*, char const*, int) const::{lambda(paddle::framework::ExecutionContext const&)#1 (closed)}>::_M_invoke(std::_Any_data const&, paddle::framework::ExecutionContext const&) 4 paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, paddle::platform::Place const&, paddle::framework::RuntimeContext*) const 5 paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, paddle::platform::Place const&) const 6 paddle::framework::OperatorBase::Run(paddle::framework::Scope const&, paddle::platform::Place const&) 7 paddle::framework::details::OpHandleBase::RunAndRecordEvent(std::function<void ()> const&) 8 paddle::framework::details::ComputationOpHandle::RunImpl() 9 paddle::framework::details::FastThreadedSSAGraphExecutor::RunOpSync(paddle::framework::details::OpHandleBase*) 10 paddle::framework::details::FastThreadedSSAGraphExecutor::RunOp(paddle::framework::details::OpHandleBase*, std::shared_ptr<paddle::framework::BlockingQueue > const&, unsigned long*) 11 std::_Function_handler<std::unique_ptr<std::__future_base::_Result_base, std::__future_base::_Result_base::_Deleter> (), std::__future_base::_Task_setter<std::unique_ptr<std::__future_base::_Result, std::__future_base::_Result_base::_Deleter>, void> >::_M_invoke(std::_Any_data const&) 12 std::__future_base::_State_base::_M_do_set(std::function<std::unique_ptr<std::__future_base::_Result_base, std::__future_base::_Result_base::_Deleter> ()>&, bool&) 13 ThreadPool::ThreadPool(unsigned long)::{lambda()#1 (closed)}::operator()() const
Python Call Stacks (More useful to users):
File "/opt/_internal/cpython-3.7.0/lib/python3.7/site-packages/paddle/fluid/framework.py", line 2525, in append_op attrs=kwargs.get("attrs", None)) File "/opt/_internal/cpython-3.7.0/lib/python3.7/site-packages/paddle/fluid/layer_helper.py", line 43, in append_op return self.main_program.current_block().append_op(*args, **kwargs) File "/opt/_internal/cpython-3.7.0/lib/python3.7/site-packages/paddle/fluid/layers/nn.py", line 1667, in conv3d "data_format": data_format, File "/mnt/code_20200826223339/model/backbone.py", line 133, in conv_bn_layer data_format=data_format) File "/mnt/code_20200826223339/model/backbone.py", line 65, in net data_format=data_format) File "/mnt/code_20200826223339/model/TSN3D.py", line 44, in net data = beckbone.net(data) File "train.py", line 155, in train train_fetch_list = model_train.net(input,label) File "train.py", line 338, in train(args)
Error Message Summary:
Error: An error occurred here. There is no accurate error hint for this error yet. We are continuously in the process of increasing hint for this kind of error check. It would be helpful if you could inform us of how this conversion went by opening a github issue. And we will resolve it with high priority.
- New issue link: https://github.com/PaddlePaddle/Paddle/issues/new
- Recommended issue content: all error stack information [Hint: CUDNN_STATUS_MAPPING_ERROR] at (/paddle/paddle/fluid/operators/conv_cudnn_op.cu:608) [operator < conv3d_grad > error] /mnt 用的是静态图框架,顺便问一下脚本多卡环境执行时是否也要先执行 export CUDA_VISIBLE_DEVICES的命令?