Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #25928

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 8月 04, 2020 by saxon_zh@saxon_zhGuest

【论文复现】wgan-gp实现后,梯度直线上升,检查了无数遍,不知道是哪一步出错了

Created by: wszzzx

`# WGAN-GP class G(fluid.dygraph.Layer): def init(self, name_scope): super(G, self).init(name_scope) name_scope = self.full_name()
self.fc1 = Linear(input_dim=100, output_dim=25622,act='relu') self.convtrans1 = Conv2DTranspose(num_channels=256,num_filters=128,filter_size=3,output_size=6,stride=2) self.bn2 = fluid.dygraph.BatchNorm(num_channels=128, act='relu') self.convtrans2 = Conv2DTranspose(num_channels=128,num_filters=64,filter_size=3,output_size=13,stride=2) self.bn3 = fluid.dygraph.BatchNorm(num_channels=64, act='relu') self.convtrans3 = Conv2DTranspose(num_channels=64,num_filters=1,filter_size=3,output_size=28,stride=2,act='tanh') def forward(self, z): z = fluid.layers.reshape(z, shape=[-1, 100]) y = self.fc1(z) y = fluid.layers.reshape(y, shape=[-1,256,2,2]) y = self.convtrans1(y) y = self.convtrans2(y) y = self.convtrans3(y) return y class D(fluid.dygraph.Layer): def init(self, name_scope): super(D, self).init(name_scope) name_scope = self.full_name() self.conv1 = Conv2D(num_channels=1, num_filters=64, filter_size=3,stride=2,) self.conv2 = Conv2D(num_channels=64, num_filters=128, filter_size=3,stride=2) self.conv3 = Conv2D(num_channels=128, num_filters=256, filter_size=3,stride=2)
self.fc1 = Linear(input_dim=25622, output_dim=1024) self.fc2 = Linear(input_dim=1024, output_dim=1)

def forward(self, img):
    z = fluid.layers.reshape(img, shape=[-1, 1, 28, 28])
    y = self.conv1(z)  
    y = self.conv2(y)
    y = self.conv3(y)
    y = fluid.layers.reshape(y, shape=[-1, 256*2*2])
    y = self.fc1(y)
    y = self.fc2(y)
    return y`

`lambda_gp = 10 def compute_gradient_penalty(D, real_samples, fake_samples): """Calculates the gradient penalty loss for WGAN GP""" # Random weight term for interpolation between real and fake samples alpha = fluid.dygraph.to_variable(np.random.uniform(size=(real_samples.shape[0],1,1,1))).astype('float32') interpolates = fluid.layers.elementwise_mul(real_samples,alpha) + fluid.layers.elementwise_mul(fake_samples,1-alpha) d_interpolates = D(interpolates) gradients = paddle.fluid.dygraph.grad(d_interpolates,inputs=interpolates)[0]

gradients = fluid.layers.reshape(gradients, shape=[gradients.shape[0],-1])
gradient = np.mean((np.linalg.norm(gradients.numpy(),2,axis=1)-1)**2)
return float(gradient)

def train(mnist_generator, epoch_num=1, batch_size=128, use_gpu=True, load_model=False): place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() with fluid.dygraph.guard(place): # 模型存储路径 model_path = './output/' d = D('D') d.train() g = G('G') g.train() # 创建优化方法 d_optimizer = fluid.optimizer.AdamOptimizer(learning_rate=2e-4, parameter_list=d.parameters()) g_optimizer = fluid.optimizer.AdamOptimizer(learning_rate=2e-4, parameter_list=g.parameters())

    # 读取上次保存的模型
    if load_model == True:
        g_para, g_opt = fluid.load_dygraph(model_path+'g')
        d_para, d_r_opt = fluid.load_dygraph(model_path+'d_o_r')
        # 上面判别器的参数已经读取到d_para了,此处无需再次读取
        _, d_f_opt = fluid.load_dygraph(model_path+'d_o_f')
        g.load_dict(g_para)
        g_optimizer.set_dict(g_opt)
        d.load_dict(d_para)
        real_d_optimizer.set_dict(d_r_opt)
        fake_d_optimizer.set_dict(d_f_opt)

    iteration_num = 0
    d_loss_list = []
    g_loss_list = []
    for epoch in range(epoch_num):
        for i, real_image in enumerate(mnist_generator()):
            # 丢弃不满整个batch_size的数据
            if(len(real_image) != BATCH_SIZE):
                continue               
            iteration_num += 1   

            z = next(z_generator())
            z = fluid.dygraph.to_variable(np.array(z))
            fake_image = g(z)
            real_image = fluid.dygraph.to_variable(np.array(real_image))

            gradient_penalty = compute_gradient_penalty(d, real_image, fake_image)

            p_d_fake = d(fake_image)
            p_d_real = d(real_image)

            # d_loss = -fluid.layers.mean(p_d_real) + fluid.layers.mean(p_d_fake) + lambda_gp * gradient_penalty
            # print('loss',-fluid.layers.mean(p_d_real).numpy(),fluid.layers.mean(p_d_fake).numpy(),lambda_gp * gradient_penalty)
            d_loss = -fluid.layers.mean(d(real_image)) + fluid.layers.mean(d(fake_image))
            d_loss.backward()
            d_optimizer.minimize(d_loss)
            d.clear_gradients()               

            # 生成器用输入的高斯噪声z生成假图片
            # fake = g(z)
            # 计算判别器d判断生成器g生成的假图片的概率

            fake_image = g(z)
            p_d_fake = d(fake_image)
            g_loss = -fluid.layers.mean(p_d_fake)
            # 反向传播更新生成器g的参数
            g_loss.backward()
            g_optimizer.minimize(g_loss)
            g.clear_gradients()
            
            # 打印输出
            if(iteration_num % 200 == 0):
                print('epoch =', epoch, ', batch =', i, ', d_loss =', d_loss.numpy(),'g_loss =', g_loss.numpy())
                show_image_grid(fake_image.numpy(), BATCH_SIZE, epoch) 
                d_loss_list.append(d_loss.numpy())        
                g_loss_list.append(g_loss.numpy())  `
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#25928
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7