Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #2502

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 6月 19, 2017 by saxon_zh@saxon_zhGuest

Paddle.v2 multi GPU is slower than one gpu.

Created by: phonism

text classification, using CNN.

def convolution_net(dict_dim, class_dim=2, emb_dim=128, hid_dim=128):
    # input layers
    title_data = paddle.layer.data("title", paddle.data_type.integer_value_sequence(dict_dim))
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(class_dim))

    #embedding layer
    title_emb = paddle.layer.embedding(input=title_data, size=emb_dim)

    # convolution layers with max pooling
    title_conv_max_2 = paddle.networks.sequence_conv_pool(
        input=title_emb, context_len=2, hidden_size=hid_dim)#, pool_type=paddle.pooling.Max())
    title_conv_max_3 = paddle.networks.sequence_conv_pool(
        input=title_emb, context_len=3, hidden_size=hid_dim)#, pool_type=paddle.pooling.Max())
    title_conv_max_4 = paddle.networks.sequence_conv_pool(
        input=title_emb, context_len=4, hidden_size=hid_dim)#, pool_type=paddle.pooling.Max())

    concat_layer = paddle.layer.concat(
            input=[
                title_conv_max_2, title_conv_max_3, title_conv_max_4,
            ])

    dropout_layer = paddle.layer.dropout(input=concat_layer, dropout_rate=0.5)

    # fc and output layer
    output = paddle.layer.fc(input=dropout_layer, size=class_dim, act=paddle.activation.Softmax())

    cost = paddle.layer.classification_cost(input=output, label=lbl)

    return cost, output, lbl

def train_cnn_model(num_pass):
    dict_dim = 640000
    class_dim = 4225
    # define data reader
    train_reader = paddle.batch(
        paddle.reader.shuffle(
            lambda: data_reader(flag=True), buf_size=1000),
        batch_size=64)
    test_reader = paddle.batch(
        lambda: data_reader(flag=False), batch_size=64)

    # network config
    [cost, output, label] = convolution_net(dict_dim, class_dim=class_dim)
    # create parameters
    parameters = paddle.parameters.create(cost)
    # create optimizer
    adam_optimizer = paddle.optimizer.Adam(
        learning_rate=1e-3,
        regularization=paddle.optimizer.L2Regularization(rate=1e-3),
        model_average=paddle.optimizer.ModelAverage(average_window=0.5))

    # add auc evaluator
    paddle.evaluator.auc(input=output, label=label)

    # create trainer
    trainer = paddle.trainer.SGD(
        cost=cost, parameters=parameters, update_equation=adam_optimizer)

    feeding = {'title': 0, 'label': 1}
    trainer.train(
        reader=train_reader,
        event_handler=event_handler,
        feeding=feeding,
        # use_sparse_updater=1,
        num_passes=num_pass)

if __name__ == "__main__":
    paddle.init(use_gpu=True, trainer_count=1)
    # paddle.init(use_gpu=True, trainer_count=4)
    num_pass = 500
    # train_cnn_model(num_pass=num_pass)
    cnn_infer("in")

GPU info: Tesla K40m * 4

run with trainer_count=1, 100 batch cost 6s.

+------------------------------------------------------+
| NVIDIA-SMI 352.39     Driver Version: 352.39         |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla K40m          On   | 0000:03:00.0     Off |                    0 |
| N/A   37C    P0    98W / 235W |   2723MiB / 11519MiB |     30%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Tesla K40m          On   | 0000:04:00.0     Off |                    0 |
| N/A   32C    P0    61W / 235W |    143MiB / 11519MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   2  Tesla K40m          On   | 0000:83:00.0     Off |                    0 |
| N/A   32C    P0    62W / 235W |    143MiB / 11519MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   3  Tesla K40m          On   | 0000:84:00.0     Off |                    0 |
| N/A   32C    P0    62W / 235W |    143MiB / 11519MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|    0     16645    C   python                                        2697MiB |
|    1     16645    C   python                                         118MiB |
|    2     16645    C   python                                         118MiB |
|    3     16645    C   python                                         118MiB |
+-----------------------------------------------------------------------------+

using trainer_count=4 100 batch cost 25s。

+------------------------------------------------------+
| NVIDIA-SMI 352.39     Driver Version: 352.39         |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla K40m          On   | 0000:03:00.0     Off |                    0 |
| N/A   26C    P0    66W / 235W |   2683MiB / 11519MiB |     35%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Tesla K40m          On   | 0000:04:00.0     Off |                    0 |
| N/A   25C    P0    70W / 235W |   1139MiB / 11519MiB |     28%      Default |
+-------------------------------+----------------------+----------------------+
|   2  Tesla K40m          On   | 0000:83:00.0     Off |                    0 |
| N/A   26C    P0    66W / 235W |   1117MiB / 11519MiB |     44%      Default |
+-------------------------------+----------------------+----------------------+
|   3  Tesla K40m          On   | 0000:84:00.0     Off |                    0 |
| N/A   25C    P0    63W / 235W |   1153MiB / 11519MiB |     47%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID  Type  Process name                               Usage      |
|=============================================================================|
|    0      9520    C   python                                        2658MiB |
|    1      9520    C   python                                        1113MiB |
|    2      9520    C   python                                        1091MiB |
|    3      9520    C   python                                        1127MiB |
+-----------------------------------------------------------------------------+
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#2502
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7