Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #24813

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 5月 30, 2020 by saxon_zh@saxon_zhGuest

用dygraph做loss.backward()的时候出错!

Created by: Zhangbeibei1991

先贴下代码 optimizer -->

def get_ner_loss(label_acts,ner_acts,ner_actprobs,ner_rewards,ner_final_rewards,pretraining=False,vocab=None):
	seq_len = len(label_acts)
	ner_tot_reward = [0. for i in range(seq_len)]
	grads = to_variable(np.zeros((1,),dtype=np.float32))
	j = 0
	for i in range(seq_len):
		if label_acts[i] > 0:
			ner_tot_reward[i] = sum(ner_rewards[j]) / seq_len + ner_final_rewards[j]  #
			for k in range(seq_len)[::-1]:
				to_grad = - layers.log(ner_actprobs[j][k]) ---> 这是算cross_entropy, ner_actprobs[j][k] 指的是预测的实体的最大概率,这样就不用算完再reduce_mean了
				if not pretraining:
					to_grad *= to_variable(np.array(ner_tot_reward[i]))

				cur_ner_act = ner_acts[j][k]
				cur_ner_str = vocab.ner_itos.get(cur_ner_act)

				concern_labels = ['Tri_B', 'Tri_I', 'Arg_tri_B', 'Arg_entity_B', 'Arg_O_B',
								  'Arg_tri_I', 'Arg_entity_I', 'Arg_O_I', 'NA_L', 'NA_R']
				concern_weights = {'Tri_B': 1.1, 'Tri_I':1.0, 'Arg_tri_B':1.1, 'Arg_entity_B':1.1, 'Arg_O_B':1.1,
								  'Arg_tri_I':1.0, 'Arg_entity_I':1.0, 'Arg_O_I':1.0, 'NA_L':0.3, 'NA_R':0.3}
				noconcern_labels = ['O','O_tri_I','O_entity_I','O_tri_B','O_entity_B']
				noconcern_weights = {'O':0.3,'O_tri_I':0.4,'O_entity_I':0.4,'O_tri_B':0.4,'O_entity_B':0.4}
				flag = False
				for label in concern_labels:
					if cur_ner_str == label:
						to_grad *= concern_weights[label]
						flag = True
						break
				if not flag:
					for label in noconcern_labels:
						if cur_ner_str == label:
							to_grad *= noconcern_weights[label]
							break
				grads = grads + to_grad
			j += 1
	return ner_tot_reward, grads

报错,在本机上:

Traceback (most recent call last):
  File "E:/BioNLP[HRL]/paddleversion/main.py", line 68, in <module>
    a.backward()
  File "<decorator-gen-75>", line 2, in backward
  File "C:\Users\Administrator\AppData\Roaming\Python\Python37\site-packages\paddle\fluid\wrapped_decorator.py", line 25, in __impl__
    return wrapped_func(*args, **kwargs)
  File "C:\Users\Administrator\AppData\Roaming\Python\Python37\site-packages\paddle\fluid\framework.py", line 216, in __impl__
    return func(*args, **kwargs)
  File "C:\Users\Administrator\AppData\Roaming\Python\Python37\site-packages\paddle\fluid\dygraph\varbase_patch_methods.py", line 116, in backward
    self._run_backward(backward_strategy, framework._dygraph_tracer())
paddle.fluid.core_avx.EnforceNotMet: 

--------------------------------------------
C++ Call Stacks (More useful to developers):
--------------------------------------------
Windows not support stack backtrace yet.

----------------------
Error Message Summary:
----------------------
Error: `num_col_dims` must be between (0, rank_of_tensor). at (D:\1.8.1\paddle\paddle/fluid/framework/eigen.h:82)
-------------------------------------------------------------------------------------------------

在服务器上:

2020-05-30 09:12:48,354-INFO: Load data start ...
W0530 09:12:50.825495   743 device_context.cc:237] Please NOTE: device: 0, CUDA Capability: 70, Driver API Version: 9.2, Runtime API Version: 9.0
W0530 09:12:50.829921   743 device_context.cc:245] device: 0, cuDNN Version: 7.3.
Traceback (most recent call last):
  File "main.py", line 66, in <module>
    gold_labels=gold_labels, mode=mode, vocab=pp.vocab)
  File "/home/aistudio/optimizer.py", line 101, in sample_optimizer
    gold_labels=gold_labels,mode=mode,ta_bias=ta_bias,ner_bias=ner_bias,vocab=vocab)
  File "/home/aistudio/optimizer.py", line 122, in optimizer
    grads.backward()
  File "</opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/decorator.py:decorator-gen-60>", line 2, in backward
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/wrapped_decorator.py", line 25, in __impl__
    return wrapped_func(*args, **kwargs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/framework.py", line 207, in __impl__
    return func(*args, **kwargs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/varbase_patch_methods.py", line 116, in backward
    self._run_backward(backward_strategy, framework._dygraph_tracer())
paddle.fluid.core_avx.EnforceNotMet: 

--------------------------------------------
C++ Call Stacks (More useful to developers):
--------------------------------------------
0   std::string paddle::platform::GetTraceBackString<char const*>(char const*&&, char const*, int)
1   paddle::platform::EnforceNotMet::EnforceNotMet(std::__exception_ptr::exception_ptr, char const*, int)
2   paddle::framework::EigenMatrix<unsigned char, 1, long>::Reshape(paddle::framework::Tensor const&, int)
3   paddle::operators::DropoutGradKernel<paddle::platform::CUDADeviceContext, float>::Compute(paddle::framework::ExecutionContext const&) const
4   std::_Function_handler<void (paddle::framework::ExecutionContext const&), paddle::framework::OpKernelRegistrarFunctor<paddle::platform::CUDAPlace, false, 0ul, paddle::operators::DropoutGradKernel<paddle::platform::CUDADeviceContext, float>, paddle::operators::DropoutGradKernel<paddle::platform::CUDADeviceContext, paddle::platform::float16>, paddle::operators::DropoutGradKernel<paddle::platform::CUDADeviceContext, double> >::operator()(char const*, char const*, int) const::{lambda(paddle::framework::ExecutionContext const&)#1}>::_M_invoke(std::_Any_data const&, paddle::framework::ExecutionContext const&)
5   paddle::imperative::PreparedOp::Run(std::map<std::string, std::vector<std::shared_ptr<paddle::imperative::VarBase>, std::allocator<std::shared_ptr<paddle::imperative::VarBase> > >, std::less<std::string>, std::allocator<std::pair<std::string const, std::vector<std::shared_ptr<paddle::imperative::VarBase>, std::allocator<std::shared_ptr<paddle::imperative::VarBase> > > > > > const*, std::map<std::string, std::vector<std::shared_ptr<paddle::imperative::VarBase>, std::allocator<std::shared_ptr<paddle::imperative::VarBase> > >, std::less<std::string>, std::allocator<std::pair<std::string const, std::vector<std::shared_ptr<paddle::imperative::VarBase>, std::allocator<std::shared_ptr<paddle::imperative::VarBase> > > > > > const*, std::unordered_map<std::string, boost::variant<boost::blank, int, float, std::string, std::vector<int, std::allocator<int> >, std::vector<float, std::allocator<float> >, std::vector<std::string, std::allocator<std::string> >, bool, std::vector<bool, std::allocator<bool> >, paddle::framework::BlockDesc*, long, std::vector<paddle::framework::BlockDesc*, std::allocator<paddle::framework::BlockDesc*> >, std::vector<long, std::allocator<long> >, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_>, std::hash<std::string>, std::equal_to<std::string>, std::allocator<std::pair<std::string const, boost::variant<boost::blank, int, float, std::string, std::vector<int, std::allocator<int> >, std::vector<float, std::allocator<float> >, std::vector<std::string, std::allocator<std::string> >, bool, std::vector<bool, std::allocator<bool> >, paddle::framework::BlockDesc*, long, std::vector<paddle::framework::BlockDesc*, std::allocator<paddle::framework::BlockDesc*> >, std::vector<long, std::allocator<long> >, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> > > > const*)
6   paddle::imperative::OpBase::Run(std::map<std::string, std::vector<std::shared_ptr<paddle::imperative::VarBase>, std::allocator<std::shared_ptr<paddle::imperative::VarBase> > >, std::less<std::string>, std::allocator<std::pair<std::string const, std::vector<std::shared_ptr<paddle::imperative::VarBase>, std::allocator<std::shared_ptr<paddle::imperative::VarBase> > > > > > const&, std::map<std::string, std::vector<std::shared_ptr<paddle::imperative::VarBase>, std::allocator<std::shared_ptr<paddle::imperative::VarBase> > >, std::less<std::string>, std::allocator<std::pair<std::string const, std::vector<std::shared_ptr<paddle::imperative::VarBase>, std::allocator<std::shared_ptr<paddle::imperative::VarBase> > > > > > const&)
7   paddle::imperative::Engine::RunOp(paddle::imperative::OpBase*, std::map<std::string, std::vector<std::shared_ptr<paddle::imperative::VarBase>, std::allocator<std::shared_ptr<paddle::imperative::VarBase> > >, std::less<std::string>, std::allocator<std::pair<std::string const, std::vector<std::shared_ptr<paddle::imperative::VarBase>, std::allocator<std::shared_ptr<paddle::imperative::VarBase> > > > > > const&, std::map<std::string, std::vector<std::shared_ptr<paddle::imperative::VarBase>, std::allocator<std::shared_ptr<paddle::imperative::VarBase> > >, std::less<std::string>, std::allocator<std::pair<std::string const, std::vector<std::shared_ptr<paddle::imperative::VarBase>, std::allocator<std::shared_ptr<paddle::imperative::VarBase> > > > > > const&, paddle::platform::Place const&)
8   paddle::imperative::BasicEngine::Execute()

----------------------
Error Message Summary:
----------------------
Error: `num_col_dims` must be between (0, rank_of_tensor). at (/paddle/paddle/fluid/framework/eigen.h:82)

希望大佬指点一下

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#24813
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7