Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #24714

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 5月 24, 2020 by saxon_zh@saxon_zhGuest

有关反向传播过程中出现的错误

Created by: luwanglin

环境:aistudio 硬件信息 当前环境高级版 切换环境 CPU 8 RAM 32GB GPU v100 显存 16GB 磁盘 100GB 环境配置 Python版本 python3.7 框架版本 PaddlePaddle 1.7.1

  1. 模型实现如下,自己实现的LRN算子

LRN 的实现

class LocalResponseNorm(fluid.dygraph.Layer):
    __constants__ = ['size', 'alpha', 'beta', 'k']

    def __init__(self, size, alpha=1e-4, beta=0.75, k=1.):
        super(LocalResponseNorm, self).__init__()
        self.size = size
        self.alpha = alpha
        self.beta = beta
        self.k = k

    def forward(self, input):
        dim = len(input.shape)
        if dim < 3:
            raise ValueError('Expected 3D or higher dimensionality \
                         input (got {} dimensions)'.format(dim))
        div = fluid.layers.unsqueeze(input * input, axes=1)
        if dim == 3:
            div = fluid.layers.pad(div, (0, 0, 0, 0, self.size // 2, (self.size - 1) // 2, 0, 0, 0, 0))
            div = fluid.layers.pool2d(div, pool_size=(self.size, 1), pool_stride=1, pool_type='avg')
            div_shape = div.shape
            div_shape.pop(1)
            div = fluid.layers.reshape(div, shape=div_shape)
        else:
            sizes = input.shape
            div = fluid.layers.reshape(div, (sizes[0], 1, sizes[1], sizes[2], -1))
            div = fluid.layers.pad(div, (0, 0, 0, 0, self.size // 2, (self.size - 1) // 2, 0, 0, 0, 0))
            div = fluid.layers.pool3d(div, (self.size, 1, 1), pool_stride=1, pool_type='avg')
            div_shape = div.shape
            div_shape.pop(1)
            div = fluid.layers.reshape(div, shape=div_shape)
            div = fluid.layers.reshape(div, sizes)
        div = fluid.layers.pow((div * self.alpha + self.k), factor=self.beta)
        # print('final', div.shape)
        return input / div


class LBNet_highwayThree(fluid.dygraph.Layer):  # SHT网络
    def __init__(self, nc=2):
        super(LBNet_highwayThree, self).__init__()

        self.convolutions1 = fluid.dygraph.Sequential(
            nn.Conv2D(nc, 16, filter_size=7, stride=1),
            nn.BatchNorm(16, act='relu'),

            nn.Conv2D(16, 16, filter_size=1, stride=1),
            nn.BatchNorm(16, act='relu'),

            nn.Conv2D(16, 16, filter_size=3, stride=1, padding=1),
            nn.BatchNorm(16, act='relu'),
            nn.Conv2D(16, 16, filter_size=1, stride=1)
        )

        self.high_way = fluid.dygraph.Sequential(
            nn.BatchNorm(2, act='relu'),
            nn.Conv2D(2, 16, filter_size=7, stride=1),
        )

        self.convolutions2 = fluid.dygraph.Sequential(
            nn.BatchNorm(16, act='relu'),
            LocalResponseNorm(5, 0.0001, 0.75, 2),
            nn.Pool2D(pool_size=2, pool_stride=2),
            nn.Conv2D(16, 64, filter_size=7, stride=1),
            nn.BatchNorm(64, act='relu'),
            LocalResponseNorm(5, 0.0001, 0.75, 2),
            nn.Pool2D(pool_size=2, pool_stride=2),

            nn.Conv2D(64, 256, filter_size=7, stride=1)
        )
        self.mlp = fluid.dygraph.Sequential(
            nn.Linear(21 * 21 * 256, 1)
        )

    def forward(self, x):
        x1 = self.convolutions1(x)
        x2 = self.high_way(x)
        x = x1 + x2
        x = self.convolutions2(x)
        x = fluid.layers.reshape(x, (-1, 21 * 21 * 256))
        x = fluid.layers.relu(x)
        x = fluid.layers.dropout(x, dropout_prob=0.5)
        x = self.mlp(x)
        return x

2.复现信息,前向传播和反向传播测试如下:

if __name__ == '__main__':
    test_data = np.ones((2, 2, 126, 126)).astype('float32')
    label = np.array([[0], [1]]).astype('float32')
    with fluid.dygraph.guard():
        lb = LBNet_highwayThree()
        # lrn = LocalResponseNorm(5, 0.0001, 0.75, 2)
        x = fluid.dygraph.base.to_variable(test_data)
        label = fluid.dygraph.base.to_variable(label)

        output = lb(x)
        print(output)
        loss = fluid.layers.sigmoid_cross_entropy_with_logits(output, label)
        print('loss:', loss)
        loss.backward()
  1. 问题描述 前向传播能够正常进行,但是反向传播计算梯度时报错
Traceback (most recent call last):
  File "work/SHT/model.py", line 104, in <module>
    loss.backward()
  File "</opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/decorator.py:decorator-gen-60>", line 2, in backward
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/wrapped_decorator.py", line 25, in __impl__
    return wrapped_func(*args, **kwargs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/framework.py", line 207, in __impl__
    return func(*args, **kwargs)
  File "/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/varbase_patch_methods.py", line 116, in backward
    self._run_backward(backward_strategy, framework._dygraph_tracer())
paddle.fluid.core_avx.EnforceNotMet:


Error Message Summary:
----------------------
Error:  at (/paddle/paddle/fluid/operators/batch_norm_op.cc:445)
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#24714
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7