Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #24645

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 5月 19, 2020 by saxon_zh@saxon_zhGuest

'function' object has no attribute 'dtype'

Created by: wangzhankun

建立issue时,为快速解决问题,请您根据使用情况给出如下信息:

  • 标题:简洁、精准描述您的问题,例如“ssd 模型前置lstm报错  ”
  • 版本、环境信息:    1)PaddlePaddle版本:1.6.3和1.7.2    2)CPU:i7-7500U    3)GPU:940MX    4)系统环境:windows10, python3.7.6
  • 模型信息    1)模型名称 unet

错误描述

在本地自定义的unet网络出现'function' object has no attribute 'dtype' 报错。 网络模型:

# 定义U-net网络中的上采样步骤
def up_conv(x, output_channel, factor):
    w_attr = fluid.param_attr.ParamAttr(
        learning_rate=0.,
        regularizer=fluid.regularizer.L2Decay(0.),
        initializer=fluid.initializer.Bilinear())
    conv_up = fluid.layers.conv2d_transpose(
        input=x,
        num_filters=output_channel,
        output_size=None,
        filter_size=2 * factor - factor % 2,
        padding=int(math.ceil((factor - 1) / 2.)),
        stride=factor,
        groups=output_channel,
        param_attr=w_attr,
        bias_attr=False)
    return conv_up
# 定义U-net网络

def unet(input1):
    conv1 = fluid.layers.conv2d(
        input1, num_filters=64, filter_size=3, act="relu", padding=1)
    conv1 = fluid.layers.conv2d(
        conv1, num_filters=64, filter_size=3, act="relu", padding=1)
    pool1 = fluid.layers.pool2d(
        conv1, pool_size=2, pool_type="max", pool_stride=2)
    conv2 = fluid.layers.conv2d(
        pool1, num_filters=128, filter_size=3, act="relu", padding=1)
    conv2 = fluid.layers.conv2d(
        conv2, num_filters=128, filter_size=3, act="relu", padding=1)
    pool2 = fluid.layers.pool2d(
        conv2, pool_size=2, pool_type="max", pool_stride=2)
    conv3 = fluid.layers.conv2d(
        pool2, num_filters=256, filter_size=3, act="relu", padding=1)
    conv3 = fluid.layers.conv2d(
        conv3, num_filters=256, filter_size=3, act="relu", padding=1)
    pool3 = fluid.layers.pool2d(
        conv3, pool_size=2, pool_type="max", pool_stride=2)
    conv4 = fluid.layers.conv2d(
        pool3, num_filters=512, filter_size=3, act="relu", padding=1)
    conv4 = fluid.layers.conv2d(
        conv4, num_filters=512, filter_size=3, act="relu", padding=1)
    drop4 = fluid.layers.dropout(conv4, dropout_prob=0.5)
    pool4 = fluid.layers.pool2d(
        drop4, pool_size=2, pool_type="max", pool_stride=2)
    conv5 = fluid.layers.conv2d(
        pool4, num_filters=1024, filter_size=3, act="relu", padding=1)
    conv5 = fluid.layers.conv2d(
        conv5, num_filters=1024, filter_size=3, act="relu", padding=1)
    drop5 = fluid.layers.dropout(conv5, dropout_prob=0.5)
    up1 = up_conv(drop5, 512, 2)
    merg1 = fluid.layers.concat(input=[conv4, up1], axis=1)


    conv6 = fluid.layers.conv2d(
        merg1, num_filters=512, filter_size=3, act="relu", padding=1)
    conv6 = fluid.layers.conv2d(
        conv6, num_filters=512, filter_size=3, act="relu", padding=1)
    up2 = up_conv(conv6, 256, 2)
    merg2 = fluid.layers.concat(input=[conv3, up2], axis=1)


    conv7 = fluid.layers.conv2d(
        merg2, num_filters=256, filter_size=3, act="leaky_relu", padding=1)
    conv7 = fluid.layers.conv2d(
        conv7, num_filters=256, filter_size=3, act="relu", padding=1)
    up3 = up_conv(conv7, 128, 2)
    merg3 = fluid.layers.concat(input=[conv2, up3], axis=1)


    conv8 = fluid.layers.conv2d(
        merg3, num_filters=128, filter_size=3, act="relu", padding=1)
    conv8 = fluid.layers.conv2d(
        conv8, num_filters=128, filter_size=3, act="relu", padding=1)
    up4 = up_conv(conv8, 64, 2)
    merg4 = fluid.layers.concat(input=[conv1, up4], axis=1)


    conv9 = fluid.layers.conv2d(
        merg4, num_filters=64, filter_size=3, act="relu", padding=1)
    conv9 = fluid.layers.conv2d(
        conv9, num_filters=64, filter_size=3, act="relu", padding=1)
    conv10 = fluid.layers.conv2d(
        conv9, num_filters=3, filter_size=3, act="relu", padding=1)
    output = fluid.layers.conv2d(
        conv10, num_filters=1, filter_size=1, act="relu")
    # 用的灰度图像,所以这里最后是输出1通道的,要是用RGB图片,就把num_filters改成3
    return output

报错信息:


# In[8]:...
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
g:\test\main.py in 
      693 resnet128_001_30_1_ = CNN(
----> 694     BATCH_SIZE=128, learning_rate=0.001, EPOCH_NUM=3, use_cuda=False, network=4)

g:\test\main.py in __init__(self, BATCH_SIZE, learning_rate, EPOCH_NUM, use_cuda, network, optimizer)
     411         self.cnn_ = 0  # 无意义,用于声明
     412         self.__optimizer_type_ = optimizer
---> 413         self.__config()
     414 
     415         self.train_iters_ = []

g:\test\main.py in __config(self)
    569 
    570             # 神经网络
--> 571             self.cnn_ = self.__network(images)
    572 
    573             # cost

g:\test\main.py in __network(self, img)
    522 
    523         if self.__network_ == 4:
--> 524             output = unet(img)
    525 
    526 

g:\test\main.py in unet(input1)
     351         conv5, num_filters=1024, filter_size=3, act="relu", padding=1)
     352     drop5 = fluid.layers.dropout(conv5, dropout_prob=0.5)
---> 353     up1 = up_conv(drop5, 512, 2)
     354     merg1 = fluid.layers.concat(input=[conv4, up1], axis=1)
     355 

g:\test\main.py in up_conv(x, output_channel, factor)
     316         groups=output_channel,
     317         param_attr=w_attr,
---> 318         bias_attr=False)
     319     return conv_up
     320 # 定义U-net网络

D:\Anaconda3\envs\pp\lib\site-packages\paddle\fluid\layers\nn.py in conv2d_transpose(input, num_filters, output_size, filter_size, padding, stride, dilation, groups, param_attr, bias_attr, use_cudnn, act, name, data_format)
   5176 
   5177     img_filter = helper.create_parameter(
-> 5178         dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
   5179 
   5180     pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)

D:\Anaconda3\envs\pp\lib\site-packages\paddle\fluid\layer_helper_base.py in create_parameter(self, attr, shape, dtype, is_bias, default_initializer, stop_gradient)
    328                 dtype=dtype,
    329                 shape=shape,
--> 330                 **attr._to_kwargs(with_initializer=True))
    331             return self.main_program.global_block().create_parameter(
    332                 dtype=dtype, shape=shape, **attr._to_kwargs())

D:\Anaconda3\envs\pp\lib\site-packages\paddle\fluid\framework.py in create_parameter(self, *args, **kwargs)
   2437                 pass
   2438             else:
-> 2439                 initializer(param, self)
   2440         param.stop_gradient = False
   2441         return param

D:\Anaconda3\envs\pp\lib\site-packages\paddle\fluid\initializer.py in __call__(self, var, block)
    837             values = [float(v) for v in weight.flat]
    838         else:
--> 839             raise ValueError("Unsupported dtype %s", input.dtype)
    840         if np.prod(shape) > 1024 * 1024:
    841             raise ValueError("The size of input is too big. ")

AttributeError: 'function' object has no attribute 'dtype'
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#24645
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7