Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #2455

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 6月 13, 2017 by saxon_zh@saxon_zhGuest

单机试验个性化推荐报错 TypeError: 'generator' object is not callable

Created by: xlhlhlx

自己定义了一个data reader,然后跑train的时候报错,但是单独运行data reader是可以正常生成样本的,具体报错的log如下: image

自己写的data reader如下:

#!/usr/bin/python
#encoding=utf8
import sys
import os
import random

class CategoryFeatureGenerator(object):
    def __init__(self):
        self.dic = dict()
        self.dic['unk'] = 0
        self.counter = 1

    def register(self, key):
        '''
        Register record.
        '''
        if key not in self.dic:
            self.dic[key] = self.counter
            self.counter += 1

    def size(self):
        return len(self.dic)


    def gen(self, key):
        '''
        Generate one-hot representation for a record.
        '''
        if key not in self.dic:
            res = self.dic['unk']
        else:
            res = self.dic[key]
        return res

    def __repr__(self):
        return '<CategoryFeatureGenerator %d>' % len(self.dic)

feature_fields = ['user_id','user_location','content_id','cate_id','word','check_in_period']
feature_dict = {}
for key in feature_fields:
    feature_dict[key] = CategoryFeatureGenerator()

def __init_dataset__(path):
    with open(path, "r") as f:
        for line in f:
            user_id, time_period, user_location, app_id, content_id, cate_id, title, brief, quality_level, check_in_period, read_time = line.strip().split('\t')
            feature_dict['user_id'].register(user_id)
            feature_dict['content_id'].register(int(content_id))
            user_location_list = user_location.split('|')
            for ul in user_location_list:
                feature_dict['user_location'].register(ul)
                feature_dict['cate_id'].register(cate_id)
                title_list = title.split(' ')
            for w in title_list:
                feature_dict['word'].register(w.lower())
                brief_list = brief.split(' ')
            for w in brief_list:
                feature_dict['word'].register(w.lower())
                feature_dict['check_in_period'].register(int(check_in_period))

class ReaderData(object):
    def __init__(self, data_path, test_ratio, is_test):
        __init_dataset__(data_path)
        self.data_path = data_path
        self.test_ratio = test_ratio
        self.is_test = is_test
    
    def reader_creator(self):
        def reader():
            rand = random.Random()
            path = self.data_path
            test_ratio = self.test_ratio
            is_test = self.is_test
            with open(path, "r") as f:
                for line in f:
                    if (rand.random() < test_ratio) == is_test:
                        user_id, time_period, user_location, app_id, content_id, cate_id, title, brief, quality_level, check_in_period, read_time = line.strip().split('\t')
                        user_id_code = feature_dict['user_id'].gen(user_id)
                        user_location_code = [feature_dict['user_location'].gen(ul) for ul in user_location.split('|')]
                        content_id_code = feature_dict['content_id'].gen(int(content_id))
                        cate_id_code = feature_dict['cate_id'].gen(cate_id)
                        title_code = [feature_dict['word'].gen(w.lower()) for w in title.split(' ')]
                        brief_code = [feature_dict['word'].gen(w.lower()) for w in brief.split(' ')]
                        check_in_period_code = feature_dict['check_in_period'].gen(int(check_in_period))
                        record = [user_id_code, int(time_period), user_location_code, content_id_code, cate_id_code, title_code, brief_code, check_in_period_code]
                        yield record + [[float(read_time)]]
        return reader

    def get_content_word_dict(self):
        return feature_dict['word'].dic

    def user_id_len(self):
        return feature_dict['user_id'].size()

    def get_user_location_dict(self):
        return feature_dict['user_location'].dic

    def content_id_len(self):
        return feature_dict['content_id'].size()

    def category_id_len(self):
        return feature_dict['cate_id'].size()
   
    def check_in_period_len(self):
        return feature_dict['check_in_period'].size()

if __name__ == '__main__':
    path = "./videoSample"
    test_ratio = 0.1
    is_test = False
    trainer = ReaderData(path, test_ratio, is_test)
    print trainer.user_id_len()
    a = trainer.get_user_location_dict()
    for no, rcd in enumerate(trainer.read()):
        print no, rcd
        if no > 10 : break

训练模型的代码如下:

#!/usr/bin/python
#encoding=utf8

import paddle.v2 as paddle
import cPickle
import copy
from paddle.v2.dataset.video import feature_dict, ReaderData 

dataset_train = ReaderData("./videoSample", 0.1, False)

def get_usr_combined_features():
    uid = paddle.layer.data(
        name='user_id',
        type=paddle.data_type.integer_value(
            dataset_train.user_id_len()))
    usr_emb = paddle.layer.embedding(input=uid, size=32)
    usr_fc = paddle.layer.fc(input=usr_emb, size=32)

    time_period = paddle.layer.data(
	name='time_period', 
	type=paddle.data_type.integer_value(24))
    time_period_emb = paddle.layer.embedding(input=time_period, size=16)
    time_period_fc = paddle.layer.fc(input=time_period_emb, size=16)

    usr_location = paddle.layer.data(
	name='user_location',
	type=paddle.data_type.sparse_binary_vector(
	len(dataset_train.get_user_location_dict())))
    usr_location_fc = paddle.layer.fc(input=usr_location, size=32)

    usr_combined_features = paddle.layer.fc(
        input=[usr_fc, time_period_fc, usr_location_fc],
        size=200,
        act=paddle.activation.Tanh())
    return usr_combined_features


def get_content_combined_features():
    content_word_dict = dataset_train.get_content_word_dict()
    content_id = paddle.layer.data(
        name='content_id',
        type=paddle.data_type.integer_value(
            dataset_train.content_id_len()))
    content_emb = paddle.layer.embedding(input=content_id, size=32)
    content_fc = paddle.layer.fc(input=content_emb, size=32)

    content_categories = paddle.layer.data(
        name='category_id',
        type=paddle.data_type.integer_value(
            dataset_train.category_id_len()))
    content_categories_emb = paddle.layer.embedding(input=content_categories, size=16)
    content_categories_fc = paddle.layer.fc(input=content_categories, size=16)

    content_title_id = paddle.layer.data(
        name='title',
        type=paddle.data_type.integer_value_sequence(len(content_word_dict)))
    content_title_emb = paddle.layer.embedding(input=content_title_id, size=32)
    content_title_conv = paddle.networks.sequence_conv_pool(
        input=content_title_emb, hidden_size=32, context_len=2)

    content_brief_id = paddle.layer.data(
	name='brief',
	type=paddle.data_type.integer_value_sequence(len(content_word_dict)))
    content_brief_emb = paddle.layer.embedding(input=content_brief_id, size=32)
    content_brief_conv = paddle.networks.sequence_conv_pool(
	input=content_brief_emb, hidden_size=32, context_len=2)

    check_in_period = paddle.layer.data(
	name='check_in_period',
	type=paddle.data_type.integer_value(
	    dataset_train.check_in_period_len()))
    check_in_period_emb = paddle.layer.embedding(input=check_in_period, size=32)
    check_in_period_fc = paddle.layer.fc(input=check_in_period, size=32)

    content_combined_features = paddle.layer.fc(
        input=[content_fc, content_categories_fc, content_title_conv, content_brief_conv, check_in_period_fc],
        size=200,
        act=paddle.activation.Tanh())
    return content_combined_features


def main():
    paddle.init(use_gpu=False)
    usr_combined_features = get_usr_combined_features()
    content_combined_features = get_content_combined_features()
    inference = paddle.layer.cos_sim(
        a=usr_combined_features, b=content_combined_features, size=1, scale=5)
    cost = paddle.layer.mse_cost(
        input=inference,
        label=paddle.layer.data(
            name='read_time', type=paddle.data_type.dense_vector(1)))

    parameters = paddle.parameters.create(cost)

    trainer = paddle.trainer.SGD(
        cost=cost,
        parameters=parameters,
        update_equation=paddle.optimizer.Adam(learning_rate=1e-4))
    feeding = {
        'user_id': 0,
        'time_period': 1,
        'user_location': 2,
        'content_id': 3,
        'category_id': 4,
        'title': 5,
        'brief': 6,
	'check_in_period': 7,
	'read_time': 8
    }

    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
            if event.batch_id % 100 == 0:
                print "Pass %d Batch %d Cost %.2f" % (
                    event.pass_id, event.batch_id, event.cost)

    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(
                dataset_train.reader_creator(), buf_size=8192),
            batch_size=256),
        event_handler=event_handler,
        feeding=feeding,
        num_passes=1)

    user_id = "123a"
    content_id = 20419555
    time_period = 16
    user_location = "上海市|上海市"
    cate_id = "1001"
    title = "白鹿原 白嘉轩 娶 的 第七任 老婆 仙草 洞房花烛 夜 白嘉轩 跑 了"
    brief = ""
    check_in_period = 3600

    user_id = feature_dict['user_id'].gen(user_id)
    content_id_code = feature_dict['content_id'].gen(content_id)
    cate_id_code = feature_dict['cate_id'].gen(cate_id)
    title_code = [feature_dict['word'].gen(w.lower()) for w in title.split(' ')]
    brief_code = [feature_dict['word'].gen(w.lower()) for w in brief.split(' ')]
    check_in_period_code = feature_dict['check_in_period'].gen(int(check_in_period))

    print [user_id, content_id, time_period, user_location, cate_id, title, brief, check_in_period]
    feature = [user_id_code, int(time_period), user_location_code, content_id_code, cate_id_code, title_code, brief_code, check_in_period_code]
    print feature

    infer_dict = copy.copy(feeding)
    del infer_dict['read_time']

    prediction = paddle.infer(
        output_layer=inference,
        parameters=parameters,
        input=[feature],
        feeding=infer_dict)
    print prediction


if __name__ == '__main__':
    main()
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#2455
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7