Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #2454

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 6月 13, 2017 by saxon_zh@saxon_zhGuest

Discussion on some key questions with a DL framework

Created by: wangkuiyi

This issue comes from https://github.com/PaddlePaddle/Paddle/pull/2445#issuecomment-308007213

I think it would be easier to subdivide this document into the following topics, and try to figure out an optimal design for each topic:

  1. memory management
    1. class Place, inspired by Majel
    2. Allocation and Allocators
    3. unified malloc and allocation API for GPU and CPU --
      p=malloc(Place pl, ...);
      used(pl);
      free(p); 
  2. Tensor
    1. consider re-use existing ones, including mshadow, Eigen, porting Majel, or write a wrapper of these libraries.
  3. Expression Template
    1. Expression Template is important for performance optimization.
    2. Is there any (what is the) difference between above libraries -- mshadow and Eigen. (Majel doesn't complete implementation of Expression Template.)
    3. Which is better?
  4. Ops and Variables
    1. TensorFlow's Ops take Tensor, a wrapper of Eigen, as its inputs and outputs.
    2. Caffe2 and PyTorch take Variable as Ops' inputs and outputs.
    3. A Variable includes a tensor for the forward algorithm and another gradient tensor for the backward algorithm. The difference seems that TensorFlow is a general-purpose framework, whereas Caffe2 and PyTorch are DL-specific.
    4. Which approach should PaddlePaddle take?
  5. Ops and Gradient Ops
    1. In TensorFlow, an Op is a general concept -- all computations are represented by ops.
    2. In Caffe2, each Op has one or more corresponding GradientOps.
    3. Which approach should PaddlePaddle take?
  6. Ops and Kernels
    1. TensorFlow separate Op's signature (as OpDef) and its implementations (as OpKernel)
    2. others might not have such clear separation.
    3. Which approach should PaddlePaddle take.
  7. Execution engine
    1. How TensorFlow and other solutions parse the network definition and create a network?
    2. How TensorFlow and other solutions execute the training algorithm over the network while creating/managing the memory of Variables?
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#2454
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7