Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #24300

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 5月 01, 2020 by saxon_zh@saxon_zhGuest

lstm错误

Created by: 3wGTA

python 3.7 paddle 1.72-gpu

V = 32
h = 3
emb_size=5
max_len = 7 #最大为5,每个句子最长为5
hidden_size = 2
num_layers = 1

label = fluid.data(name='label', shape=[None, 1], dtype='int64')
x = fluid.data(name='t', shape=[None], dtype='int64',lod_level=1)
y = fluid.data(name='h', shape=[None], dtype='int64',lod_level=1)


w = fluid.ParamAttr(name='emb_vec', initializer=fluid.initializer.NumpyArrayInitializer(weight), trainable=False)

emb_x = fluid.embedding(input=x, size=[32,5], param_attr=w)
emb_y = fluid.embedding(input=y, size=[32,5], param_attr=w)

pad_value = fluid.layers.assign(input=np.array([0.0], dtype=np.float32))
pad_x,info_x = fluid.layers.sequence_pad(emb_x,pad_value)
pad_y,info_y = fluid.layers.sequence_pad(emb_y,pad_value)
batch_size=5
init_h = fluid.layers.fill_constant([num_layers, batch_size, hidden_size], 'float32', 0)
init_c = fluid.layers.fill_constant([num_layers, batch_size, hidden_size], 'float32', 0)
# lstm 网络

# 返回的形状是 batch_size, seq_len, hiddensize
lstm_x, x_last_h, x_last_c = fluid.layers.lstm(pad_x, init_h, init_c, max_len, hidden_size, num_layers,is_bidirec=True)

use_gpu = True
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
main_program = fluid.default_main_program()
feeder = fluid.DataFeeder(feed_list=['t', 'h','label'], place=place)
exe.run(fluid.default_startup_program())

fetch_var = [x, y, emb_x, emb_y, pad_x, pad_y, lstm_x, x_last_h]

for i, data in enumerate(train_reader()):
    print(data)
    result = exe.run(
        main_program,
        feeder.feed(data),
        fetch_list=fetch_var,
        return_numpy=False
        )
    break

经过多次测试,发现经过lstm网络之后输出的形状是[batch_size, seq_len, hidden_size] 并且lstm中的双向是没有效果的,是否使用双向,得到的结果都是上述的形状

本次输入数据 [([9, 1, 3, 8], [8, 5], 0), ([0, 3, 2, 5], [8, 3], 0), ([9, 5], [4, 5, 9, 3, 2, 3, 7], 1), ([4, 5, 5, 4], [7, 5, 2], 1), ([6, 7], [5, 4, 6, 0, 4], 1)]

batch_size=5 fetch的结果如下 t [[0, 4, 8, 10, 14, 16]] [9 1 3 8 0 3 2 5 9 5 4 5 5 4 6 7] (16,)


h [[0, 2, 4, 11, 14, 19]] [8 5 8 3 4 5 9 3 2 3 7 7 5 2 5 4 6 0 4] (19,)


embedding_0.tmp_0 [[0, 4, 8, 10, 14, 16]] [[0. 1. 1. 0. 1.] [1. 0. 0. 1. 0.] [0. 1. 0. 1. 0.] [0. 0. 0. 0. 1.] [0. 0. 0. 0. 0.] [0. 1. 0. 1. 0.] [1. 0. 1. 0. 0.] [0. 1. 0. 0. 0.] [0. 1. 1. 0. 1.] [0. 1. 0. 0. 0.] [0. 1. 1. 1. 0.] [0. 1. 0. 0. 0.] [0. 1. 0. 0. 0.] [0. 1. 1. 1. 0.] [0. 0. 1. 1. 1.] [0. 0. 1. 1. 0.]] (16, 5)


embedding_1.tmp_0 [[0, 2, 4, 11, 14, 19]] [[0. 0. 0. 0. 1.] [0. 1. 0. 0. 0.] [0. 0. 0. 0. 1.] [0. 1. 0. 1. 0.] [0. 1. 1. 1. 0.] [0. 1. 0. 0. 0.] [0. 1. 1. 0. 1.] [0. 1. 0. 1. 0.] [1. 0. 1. 0. 0.] [0. 1. 0. 1. 0.] [0. 0. 1. 1. 0.] [0. 0. 1. 1. 0.] [0. 1. 0. 0. 0.] [1. 0. 1. 0. 0.] [0. 1. 0. 0. 0.] [0. 1. 1. 1. 0.] [0. 0. 1. 1. 1.] [0. 0. 0. 0. 0.] [0. 1. 1. 1. 0.]] (19, 5)


sequence_pad_0.tmp_0 [] [[[0. 1. 1. 0. 1.] [1. 0. 0. 1. 0.] [0. 1. 0. 1. 0.] [0. 0. 0. 0. 1.]]

[[0. 0. 0. 0. 0.] [0. 1. 0. 1. 0.] [1. 0. 1. 0. 0.] [0. 1. 0. 0. 0.]]

[[0. 1. 1. 0. 1.] [0. 1. 0. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]]

[[0. 1. 1. 1. 0.] [0. 1. 0. 0. 0.] [0. 1. 0. 0. 0.] [0. 1. 1. 1. 0.]]

[[0. 0. 1. 1. 1.] [0. 0. 1. 1. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]]] (5, 4, 5)


sequence_pad_1.tmp_0 [] [[[0. 0. 0. 0. 1.] [0. 1. 0. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]]

[[0. 0. 0. 0. 1.] [0. 1. 0. 1. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]]

[[0. 1. 1. 1. 0.] [0. 1. 0. 0. 0.] [0. 1. 1. 0. 1.] [0. 1. 0. 1. 0.] [1. 0. 1. 0. 0.] [0. 1. 0. 1. 0.] [0. 0. 1. 1. 0.]]

[[0. 0. 1. 1. 0.] [0. 1. 0. 0. 0.] [1. 0. 1. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]]

[[0. 1. 0. 0. 0.] [0. 1. 1. 1. 0.] [0. 0. 1. 1. 1.] [0. 0. 0. 0. 0.] [0. 1. 1. 1. 0.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]]] (5, 7, 5)


cudnn_lstm_0.tmp_0 [] [[[-0.01163395 -0.03404206] [-0.03346499 0.09141013] [-0.01192071 -0.00806206] [ 0.01852721 0.02037505]]

[[-0.02112382 0.0178064 ] [ 0.00036139 0.02811656] [-0.04091306 -0.03953137] [ 0.01994075 0.04983816]]

[[-0.03010507 -0.02586269] [-0.01206493 0.04903913] [-0.02649166 0.01360786] [-0.02587583 0.01543753]]

[[ 0.00416536 -0.02817909] [ 0.04569617 0.04708511] [-0.03898652 -0.01187311] [ 0.00342977 0.01862298]]

[[-0.02776574 -0.04738818] [-0.06142154 0.09363435] [-0.03319343 0.01389923] [-0.00538392 0.0187942 ]]] (5, 4, 2)

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#24300
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7