Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #23064

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
You need to sign in or sign up before continuing.
已关闭
开放中
Opened 3月 17, 2020 by saxon_zh@saxon_zhGuest

Why dygraph runs faster than executer(static graph) in each training iteration?

Created by: larenzhang

如果您没有查询到相似问题,为快速解决您的提问,建立issue时请提供如下细节信息:

  • 标题:简洁、精准概括您的问题,例如“Insufficient Memory xxx" ”
  • 版本、环境信息:    1)PaddlePaddle版本:1.7.0    3)GPU: titan xp, cuda 10.1, cudnn 7.6.1    4)系统环境:ubuntu 16.04, python3.5
  • 训练信息    1)单机, 单卡

dygraph训练代码:

import argparse
import re
import subprocess
import time
import numpy as np
import models.dynamic_resnet as res_models
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
import paddle


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('-a', '--arch', default='ResNet18', type=str)

    parser.add_argument('--batch-size', type=int, default=64)  # 128
    parser.add_argument('--learning-rate', type=float, default=0.025)
    parser.add_argument('--momentum', type=float, default=0.9)
    parser.add_argument('--weight-decay', type=float, default=1e-4)

    parser.add_argument('--dynamic', action='store_true')
    parser.add_argument('--single', action='store_true')
    parser.add_argument('--use_data_parallel', action='store_true')
    parser.add_argument('--step', type=int, default=100)


    return parser.parse_args()


def main():
    args = parse_args()
    worker(args)

def worker(args):

    def train_func(data):
        model.train()
        # for batch_id, data in enumerate(train_reader()):
        image = np.array([x[0].reshape(3, 224, 224) for x in data]).astype('float32')
        label = np.array([x[1] for x in data]).astype('int64').reshape(-1, 1)
        img = to_variable(image)
        lab = to_variable(label)
        # lab.stop_gradient = True

        logits = model(img)
        loss = fluid.layers.softmax_with_cross_entropy(logits, lab)
        avg_loss = fluid.layers.mean(loss)
        avg_loss.backward()
        optimizer.minimize(avg_loss)
        model.clear_gradients()

    def infer_func(image):
        image = fluid.dygraph.to_variable(image)
        logits = model(image)
        return logits

    device_num = fluid.core.get_cuda_device_count()
    if device_num > 0:
        use_cuda = True
    else:
        use_cuda = False

    image = np.random.random([args.batch_size, 3, 224, 224]).astype(np.float32)
    label = np.random.randint(1000, size=[args.batch_size , 1])

    def reader_generator():
        def reader():
            for i in range(len(image)):
                yield image[i, :], label[i]

        return reader

    place = fluid.CUDAPlace(0)

    with fluid.dygraph.guard(place):
        if 'ResNet' in args.arch:
            model = res_models.__dict__[args.arch]()
        else:
            raise NotImplementedError

        optimizer = fluid.optimizer.Momentum(parameter_list=model.parameters(), \
                                             learning_rate=args.learning_rate, \
                                             momentum=args.momentum, \
                                             regularization=fluid.regularizer.L2Decay(args.weight_decay))
        train_reader = paddle.batch(reader_generator(), batch_size=args.batch_size, drop_last=False)
        data = iter(train_reader()).__next__()

        for i in range(10):
            train_func(data)

        start_time = time.time()
        for i in range(args.step):
            train_func(data)

        avg_time = (time.time()-start_time) / args.step
        stdout = subprocess.getoutput('nvidia-smi')
        mem = re.findall(r'\|  (.*?)MiB /', stdout)[0].strip()

        print('Paddle,Model:{0},Dy:{1},#GPU:{2},batch_size:{3},mem:{4}M, avg_time:{5:.3f}ms'.\
              format(args.arch, args.dynamic, device_num, args.batch_size, mem, avg_time*1000))


if __name__ == "__main__":
    main()

executor 代码

import argparse
import os
import re
import subprocess
import time

import numpy as np
import models.static_resnet as res_models
import paddle.fluid as fluid

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('-a', '--arch', default='ResNet18', type=str)

    parser.add_argument('--batch-size', type=int, default=64)  # 128
    parser.add_argument('--learning-rate', type=float, default=0.025)
    parser.add_argument('--momentum', type=float, default=0.9)
    parser.add_argument('--weight-decay', type=float, default=1e-4)

    parser.add_argument('--dynamic', action='store_true')
    parser.add_argument('--single', action='store_true')
    parser.add_argument('--compiled', action='store_true')
    parser.add_argument('--step', type=int, default=100)

    return parser.parse_args()


def main():
    args = parse_args()
    worker(args)

def worker(args):
    if 'ResNet' in args.arch:
        model = res_models.__dict__[args.arch]()
    else:
        raise NotImplementedError

    def inference_program():
        data_shape = [None, 3, 224, 224]
        images = fluid.data(name='image', shape=data_shape, dtype='float32')

        predict = model.net(images)
        return predict

    def train_program():
        logits = inference_program()

        label = fluid.data(name='label', shape=[None, 1], dtype='int64')
        cost = fluid.layers.softmax_with_cross_entropy(logits, label)
        avg_cost = fluid.layers.mean(cost)
        # accuracy = fluid.layers.accuracy(input=predict, label=label)
        return [avg_cost, logits]

    device_num = fluid.core.get_cuda_device_count()
    if device_num > 0:
        use_cuda = True
    else:
        use_cuda = False

    loss, predict = train_program()

    image = np.random.random([args.batch_size, 3, 224, 224]).astype(np.float32)  # pylint: disable=no-member
    label = np.random.randint(1000, size=[args.batch_size, 1])
    momentum_kwargs = {'learning_rate':  args.learning_rate,
                       'momentum': args.momentum,
                       'regularization': fluid.regularizer.L2Decay(args.weight_decay)}
    optimizer = fluid.optimizer.Momentum(**momentum_kwargs)

    optimizer.minimize(loss)
    place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)

    main_program = fluid.default_main_program()
    if args.compiled:
        main_program = fluid.compiler.CompiledProgram(main_program)

    exe.run(fluid.default_startup_program())

    for i in range(10):
        exe.run(program=main_program,
                feed={'image': image, 'label': label},
                fetch_list=[loss.name])

    start_time = time.time()
    for i in range(args.step):
        exe.run(program=main_program,
                feed={'image':image, 'label':label},
                fetch_list=[loss.name])

    avg_time = (time.time() - start_time)/args.step
    stdout = subprocess.getoutput('nvidia-smi')
    mem = re.findall(r'\|  (.*?)MiB /', stdout)[0].strip()
    print('PaddlePaddle, model:{0}, Dy:{1}, #GPU:{2}, batch_size:{3}, mem:{4}M, time:{5:.3f}ms'. \
          format(args.arch, args.dynamic, device_num, args.batch_size, mem, avg_time*1000))
    exe.close()

if __name__ == "__main__":
    main()

在单卡titan XP, batch_size=64 训练100个iteration, 每个iteration平均测速时间为: dygraph:102.8ms executor:126.5ms executor with compile:108.6ms

按理说executor是静态图执行,dygraph是动态执行,executor应该比dygraph快才对,但是测试结果与预期相悖。是我代码写的有问题还是其他什么原因,期望得到官方解答。

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#23064
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7