Paddle gpu 1.7.0 安装 提示Error: Cannot load cudnn shared library
Created by: zengqi0730
1)PaddlePaddle版本:paddlepaddle-gpu 1.7.0.post107 2)CPU:Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz 3)GPU:1080Ti 4)系统环境:Ubuntu Kylin 18.04.3 LTS、Python3.6.10
-
安装方式信息: 1)pip安装:pip install paddlepaddle-gpu==1.7.0.post107 -i https://mirror.baidu.com/pypi/simple
-
复现信息:
-
conda 已有环境 base * /home/edu/anaconda3 paddle /home/edu/anaconda3/envs/paddle py36 /home/edu/anaconda3/envs/py36 # 其中安装了pytorch1.4.0 tf1.12 /home/edu/anaconda3/envs/tf1.12 edu@edu-Alienware-Aurora-R7:~/Desktop$ source activate paddle (paddle) edu@edu-Alienware-Aurora-R7:~/Desktop$ conda list
packages in environment at /home/edu/anaconda3/envs/paddle:
Name Version Build Channel
_libgcc_mutex 0.1 main https://mirrors.ustc.edu.cn/anaconda/pkgs/main _tflow_select 2.1.0 gpu http://mirrors.ustc.edu.cn/anaconda/pkgs/main absl-py 0.9.0 py36_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main astor 0.8.0 py36_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main blas 1.0 mkl http://mirrors.ustc.edu.cn/anaconda/pkgs/main c-ares 1.15.0 h7b6447c_1001 http://mirrors.ustc.edu.cn/anaconda/pkgs/main ca-certificates 2020.1.1 0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main certifi 2019.11.28 py36_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main chardet 3.0.4 cudatoolkit 10.0.130 0 http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main cudnn 7.6.5 cuda10.0_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main cupti 10.0.130 0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main cycler 0.10.0 decorator 4.4.2 funcsigs 1.0.2 gast 0.3.3 py_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main google-pasta 0.1.8 py_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main graphviz 0.13.2 grpcio 1.27.2 py36hf8bcb03_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main h5py 2.10.0 py36h7918eee_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main hdf5 1.10.4 hb1b8bf9_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main idna 2.9 intel-openmp 2020.0 166 http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main keras-applications 1.0.8 py_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main keras-preprocessing 1.1.0 py_1 http://mirrors.ustc.edu.cn/anaconda/pkgs/main kiwisolver 1.1.0 ld_impl_linux-64 2.33.1 h53a641e_7 https://mirrors.ustc.edu.cn/anaconda/pkgs/main libedit 3.1.20181209 hc058e9b_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main libffi 3.2.1 hd88cf55_4 https://mirrors.ustc.edu.cn/anaconda/pkgs/main libgcc-ng 9.1.0 hdf63c60_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main libgfortran-ng 7.3.0 hdf63c60_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main libprotobuf 3.11.4 hd408876_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main libstdcxx-ng 9.1.0 hdf63c60_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main markdown 3.1.1 py36_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main matplotlib 3.2.0 mkl 2020.0 166 http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main mkl-service 2.3.0 py36he904b0f_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main mkl_fft 1.0.15 py36ha843d7b_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main mkl_random 1.1.0 py36hd6b4f25_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main ncurses 6.2 he6710b0_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main nltk 3.4.5 numpy 1.18.1 py36h4f9e942_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main numpy 1.18.1 numpy-base 1.18.1 py36hde5b4d6_1 http://mirrors.ustc.edu.cn/anaconda/pkgs/main objgraph 3.4.1 opencv-python 4.2.0.32 openssl 1.1.1d h7b6447c_4 https://mirrors.ustc.edu.cn/anaconda/pkgs/main paddlepaddle-gpu 1.7.0.post107 paddleslim 1.0.1 Pillow 7.0.0 pip 20.0.2 py36_1 https://mirrors.ustc.edu.cn/anaconda/pkgs/main prettytable 0.7.2 protobuf 3.11.4 py36he6710b0_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main protobuf 3.11.3 pyparsing 2.4.6 python 3.6.10 h0371630_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main python-dateutil 2.8.1 PyYAML 5.3 rarfile 3.1 readline 7.0 h7b6447c_5 https://mirrors.ustc.edu.cn/anaconda/pkgs/main requests 2.23.0 scipy 1.4.1 py36h0b6359f_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main scipy 1.3.1 setuptools 46.0.0 py36_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main six 1.14.0 py36_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main sqlite 3.31.1 h7b6447c_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main tensorboard 1.14.0 py36hf484d3e_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main tensorflow 1.14.0 gpu_py36h57aa796_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main tensorflow-base 1.14.0 gpu_py36h8d69cac_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main tensorflow-estimator 1.14.0 py_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main tensorflow-gpu 1.14.0 h0d30ee6_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main termcolor 1.1.0 py36_1 http://mirrors.ustc.edu.cn/anaconda/pkgs/main tk 8.6.8 hbc83047_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main tqdm 4.43.0 urllib3 1.25.8 werkzeug 1.0.0 py_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main wheel 0.34.2 py36_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main wrapt 1.11.2 py36h7b6447c_0 http://mirrors.ustc.edu.cn/anaconda/pkgs/main xz 5.2.4 h14c3975_4 https://mirrors.ustc.edu.cn/anaconda/pkgs/main zlib 1.2.11 h7b6447c_3 https://mirrors.ustc.edu.cn/anaconda/pkgs/main (paddle) edu@edu-Alienware-Aurora-R7:~/Desktop$ python Python 3.6.10 |Anaconda, Inc.| (default, Jan 7 2020, 21:14:29) [GCC 7.3.0] on linux Type "help", "copyright", "credits" or "license" for more information.
import paddle.fluid paddle.fluid.install_check.run_check() Running Verify Paddle Program ... W0313 11:13:35.911985 11802 device_context.cc:237] Please NOTE: device: 0, CUDA Capability: 61, Driver API Version: 10.1, Runtime API Version: 10.0 W0313 11:13:35.912094 11802 dynamic_loader.cc:120] Can not find library: libcudnn.so. The process maybe hang. Please try to add the lib path to LD_LIBRARY_PATH. W0313 11:13:35.912115 11802 dynamic_loader.cc:179] Failed to find dynamic library: libcudnn.so ( libcudnn.so: cannot open shared object file: No such file or directory ) Please specify its path correctly using following ways: Method. set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH on Mac OS. For instance, issue command: export LD_LIBRARY_PATH=... Note: After Mac OS 10.11, using the DYLD_LIBRARY_PATH is impossible unless System Integrity Protection (SIP) is disabled. /home/edu/anaconda3/envs/paddle/lib/python3.6/site-packages/paddle/fluid/executor.py:782: UserWarning: The following exception is not an EOF exception. "The following exception is not an EOF exception.") Traceback (most recent call last): File "", line 1, in File "/home/edu/anaconda3/envs/paddle/lib/python3.6/site-packages/paddle/fluid/install_check.py", line 124, in run_check test_simple_exe() File "/home/edu/anaconda3/envs/paddle/lib/python3.6/site-packages/paddle/fluid/install_check.py", line 120, in test_simple_exe exe0.run(startup_prog) File "/home/edu/anaconda3/envs/paddle/lib/python3.6/site-packages/paddle/fluid/executor.py", line 783, in run six.reraise(*sys.exc_info()) File "/home/edu/anaconda3/envs/paddle/lib/python3.6/site-packages/six.py", line 703, in reraise raise value File "/home/edu/anaconda3/envs/paddle/lib/python3.6/site-packages/paddle/fluid/executor.py", line 778, in run use_program_cache=use_program_cache) File "/home/edu/anaconda3/envs/paddle/lib/python3.6/site-packages/paddle/fluid/executor.py", line 831, in _run_impl use_program_cache=use_program_cache) File "/home/edu/anaconda3/envs/paddle/lib/python3.6/site-packages/paddle/fluid/executor.py", line 905, in _run_program fetch_var_name) paddle.fluid.core_avx.EnforceNotMet:
C++ Call Stacks (More useful to developers):
0 std::string paddle::platform::GetTraceBackString<char const*>(char const*&&, char const*, int) 1 paddle::platform::EnforceNotMet::EnforceNotMet(std::__exception_ptr::exception_ptr, char const*, int) 2 paddle::platform::dynload::EnforceCUDNNLoaded(char const*) 3 paddle::platform::CUDADeviceContext::CUDADeviceContext(paddle::platform::CUDAPlace) 4 std::_Function_handler<std::unique_ptr<paddle::platform::DeviceContext, std::default_deletepaddle::platform::DeviceContext > (), std::reference_wrapper<std::_Bind_simple<paddle::platform::EmplaceDeviceContext<paddle::platform::CUDADeviceContext, paddle::platform::CUDAPlace>(std::map<paddle::platform::Place, std::shared_future<std::unique_ptr<paddle::platform::DeviceContext, std::default_deletepaddle::platform::DeviceContext > >, std::lesspaddle::platform::Place, std::allocator<std::pair<paddle::platform::Place const, std::shared_future<std::unique_ptr<paddle::platform::DeviceContext, std::default_deletepaddle::platform::DeviceContext > > > > >, paddle::platform::Place)::{lambda()#1 (closed)} ()> > >::_M_invoke(std::_Any_data const&) 5 std::_Function_handler<std::unique_ptr<std::__future_base::_Result_base, std::__future_base::_Result_base::_Deleter> (), std::__future_base::_Task_setter<std::unique_ptr<std::__future_base::_Result<std::unique_ptr<paddle::platform::DeviceContext, std::default_deletepaddle::platform::DeviceContext > >, std::__future_base::_Result_base::_Deleter>, std::unique_ptr<paddle::platform::DeviceContext, std::default_deletepaddle::platform::DeviceContext > > >::_M_invoke(std::_Any_data const&) 6 std::__future_base::_State_base::_M_do_set(std::function<std::unique_ptr<std::__future_base::_Result_base, std::__future_base::_Result_base::_Deleter> ()>&, bool&) 7 std::__future_base::_Deferred_state<std::_Bind_simple<paddle::platform::EmplaceDeviceContext<paddle::platform::CUDADeviceContext, paddle::platform::CUDAPlace>(std::map<paddle::platform::Place, std::shared_future<std::unique_ptr<paddle::platform::DeviceContext, std::default_deletepaddle::platform::DeviceContext > >, std::lesspaddle::platform::Place, std::allocator<std::pair<paddle::platform::Place const, std::shared_future<std::unique_ptr<paddle::platform::DeviceContext, std::default_deletepaddle::platform::DeviceContext > > > > >, paddle::platform::Place)::{lambda()#1 (closed)} ()>, std::unique_ptr<paddle::platform::DeviceContext, std::default_deletepaddle::platform::DeviceContext > >::_M_run_deferred() 8 paddle::platform::DeviceContextPool::Get(paddle::platform::Place const&) 9 paddle::framework::GarbageCollector::GarbageCollector(paddle::platform::Place const&, unsigned long) 10 paddle::framework::UnsafeFastGPUGarbageCollector::UnsafeFastGPUGarbageCollector(paddle::platform::CUDAPlace const&, unsigned long) 11 paddle::framework::Executor::RunPreparedContext(paddle::framework::ExecutorPrepareContext*, paddle::framework::Scope*, bool, bool, bool) 12 paddle::framework::Executor::Run(paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool, std::vector<std::string, std::allocatorstd::string > const&, bool, bool)
Error Message Summary:
Error: Cannot load cudnn shared library. Cannot invoke method cudnnGetVersion at (/paddle/paddle/fluid/platform/dynload/cudnn.cc:63)
import tensorflow as tf print(tf.version) 1.14.0 tf.test.gpu_device_name() 2020-03-13 11:17:03.429640: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA 2020-03-13 11:17:03.460899: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 3699850000 Hz 2020-03-13 11:17:03.461319: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x562f07660ec0 executing computations on platform Host. Devices: 2020-03-13 11:17:03.461343: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): , 2020-03-13 11:17:03.461449: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcuda.so.1 2020-03-13 11:17:03.461552: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-03-13 11:17:03.461941: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties: name: GeForce GTX 1080 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.582 pciBusID: 0000:01:00.0 2020-03-13 11:17:03.480250: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0 2020-03-13 11:17:03.654387: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcublas.so.10.0 2020-03-13 11:17:03.749657: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcufft.so.10.0 2020-03-13 11:17:03.781214: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcurand.so.10.0 2020-03-13 11:17:03.948525: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusolver.so.10.0 2020-03-13 11:17:04.061082: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcusparse.so.10.0 2020-03-13 11:17:04.071400: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudnn.so.7 2020-03-13 11:17:04.071702: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-03-13 11:17:04.073268: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-03-13 11:17:04.074585: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0 2020-03-13 11:17:04.074718: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcudart.so.10.0 2020-03-13 11:17:04.097656: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix: 2020-03-13 11:17:04.097738: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0 2020-03-13 11:17:04.097764: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N 2020-03-13 11:17:04.098118: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-03-13 11:17:04.099641: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-03-13 11:17:04.101200: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:1005] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 2020-03-13 11:17:04.102656: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/device:GPU:0 with 10087 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1) 2020-03-13 11:17:04.107436: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x562f07661600 executing computations on platform CUDA. Devices: 2020-03-13 11:17:04.107505: I tensorflow/compiler/xla/service/service.cc:175] StreamExecutor device (0): GeForce GTX 1080 Ti, Compute Capability 6.1 '/device:GPU:0'
(paddle) edu@edu-Alienware-Aurora-R7:~/Downloads$ cat /usr/local/cuda/version.txt CUDA Version 10.1.243 (paddle) edu@edu-Alienware-Aurora-R7:~/Downloads$ cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 #define CUDNN_MAJOR 7 #define CUDNN_MINOR 6 #define CUDNN_PATCHLEVEL 5
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
#include "driver_types.h"