Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #22377

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 1月 20, 2020 by saxon_zh@saxon_zhGuest

No output from gradients

Created by: leonleeldc

Hi, 不知道为啥下面这个 gradient出来结果为空。

def G_Jacobian(netG, XVar, cnts, lambdas, z, iter_str='', adding_noise_var=0, diag_Reg_val=0.1): interpolates = z interpolates.stop_gradient = False interpolates.stop_gradient_ = False G = netG(interpolates) G.stop_gradient = False G.stop_gradient_ = False V = XVar(interpolates, cnts, lambdas) V.stop_gradient = False V.stop_gradient_ = False if len(G.shape) == 4: G = fluid.layers.reshape(G, [G.shape[0], G.shape[1] * G.shape[2] * G.shape[3]]) V = fluid.layers.reshape(V, [V.shape[0], V.shape[1] * V.shape[2] * V.shape[3]])

PixN = G.shape[1]

for i in range(PixN):
    pixel = G[:, i]
    grad_out = fluid.layers.ones_like(pixel)
    grad_out.stop_gradient_ = False
    g_gradients = fluid.gradients(targets=pixel, inputs=interpolates,
                                          target_gradients=grad_out)[0]

我觉得跟netG(interpolates)有关,所以我把netG也copy在下面: class generator(fluid.dygraph.Layer): # Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657) # Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S # from the main, we can see that input_dim=62, input_size=32 and output_dim=1 def init(self, name_scope, input_dim=62, output_dim=1, input_size=32, norm=True, use_bias=True,stddev=1): super(generator, self).init(name_scope) if use_bias == False: de_bias_attr = False else: de_bias_attr = fluid.ParamAttr(name="de_bias",initializer=fluid.initializer.Constant(0.0)) self.input_dim = input_dim self.output_dim = output_dim self.input_size = input_size

    self.fc = Linear(name_scope=name_scope + '_fc', input_size=self.input_dim,
                     output_size=128 * (self.input_size // 8) * (self.input_size // 8))
    ##128 * (self.input_size // 8) * (self.input_size // 8)
    with fluid.dygraph.guard():
        if norm:
            self.bn = BatchNorm(self.full_name(),
                num_channels=128 * (self.input_size // 8) * (self.input_size // 8),
                param_attr=fluid.ParamAttr(
                    name="scale",
                    initializer=fluid.initializer.NormalInitializer(1.0,0.02)),
                bias_attr=fluid.ParamAttr(
                    name="bias",
                    initializer=fluid.initializer.Constant(0.0)),
                trainable_statistics=True
                )
            self.bn_2 = BatchNorm(self.full_name(),
                    num_channels=128,
                    param_attr=fluid.ParamAttr(
                        name="scale",
                        initializer=fluid.initializer.NormalInitializer(1.0,0.02)),
                    bias_attr=fluid.ParamAttr(
                        name="bias",
                        initializer=fluid.initializer.Constant(0.0)),
                    trainable_statistics=True
                    )

        self.deconv = Conv2DTranspose(self.full_name(),
                                       128,
                                       filter_size=4,
                                       stride=2,
                                       padding=[1, 1],
                                      param_attr=fluid.ParamAttr(
                                          name="this_is_deconv_weights",
                                          initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=stddev)),
                                      bias_attr=de_bias_attr
                                      )

        self.deconv_2 = Conv2DTranspose(self.full_name(),
                                       64,
                                       filter_size=4,
                                       stride=2,
                                       padding=[1, 1],
                                        param_attr=fluid.ParamAttr(
                                            name="this_is_deconv_weights",
                                            initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=stddev)),
                                        bias_attr=de_bias_attr
                                        )

        self.deconv_3 = Conv2DTranspose(self.full_name(),
                                       1,
                                       filter_size=4,
                                       stride=2,
                                       padding=[1, 1],
                                        param_attr=fluid.ParamAttr(
                                            name="this_is_deconv_weights",
                                            initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=stddev)),
                                        bias_attr=de_bias_attr
                                        )

        self.bn_3 = BatchNorm(self.full_name(),
                num_channels=64,
                param_attr=fluid.ParamAttr(
                    name="scale",
                    initializer=fluid.initializer.NormalInitializer(1.0,0.02)),
                bias_attr=fluid.ParamAttr(
                    name="bias",
                    initializer=fluid.initializer.Constant(0.0)),
                trainable_statistics=True
                )
def forward(self, input):
    x = self.fc(input)
    x = self.bn(x)
    x = fluid.layers.leaky_relu(x)
    x = fluid.layers.reshape(x, [-1, 128, (self.input_size // 8), (self.input_size // 8)])
    x = self.deconv(x)
    x = self.bn_2(x)
    x = fluid.layers.leaky_relu(x)
    x = self.deconv_2(x)
    x = self.bn_3(x)
    x = fluid.layers.leaky_relu(x)
    x = self.deconv_3(x)
    x = fluid.layers.tanh(x)
    #print('size of x in forward discriminator:{}'.format(x.shape))
    return x

错误信息如下:

Iteration: [ 3] [ 3/ 1] D_loss: 9.09784412, G_loss: 4.39907074 Train: ite =3 loss = [2.1675575e+10]

Traceback (most recent call last): File "/home/dingcheng/.pycharm_helpers/pydev/pydevd.py", line 1664, in main() File "/home/dingcheng/.pycharm_helpers/pydev/pydevd.py", line 1658, in main globals = debugger.run(setup['file'], None, None, is_module) File "/home/dingcheng/.pycharm_helpers/pydev/pydevd.py", line 1068, in run pydev_imports.execfile(file, globals, locals) # execute the script File "/home/dingcheng/.pycharm_helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "/media/data2/dingcheng/workspace/baidu/ccl/Likelihood_Gan/mnist_model_paddle/g_ig_T_cnn_wGAN_Info_paddle.py", line 951, in main() File "/media/data2/dingcheng/workspace/baidu/ccl/Likelihood_Gan/mnist_model_paddle/g_ig_T_cnn_wGAN_Info_paddle.py", line 945, in main igan.train() File "/media/data2/dingcheng/workspace/baidu/ccl/Likelihood_Gan/mnist_model_paddle/g_ig_T_cnn_wGAN_Info_paddle.py", line 620, in train self.opt.adding_noise_var, self.opt.diag_Reg_val) File "/media/data2/dingcheng/workspace/baidu/ccl/Likelihood_Gan/mnist_model_paddle/utils_paddle.py", line 412, in G_LLK_Geom diag_Reg_val) File "/media/data2/dingcheng/workspace/baidu/ccl/Likelihood_Gan/mnist_model_paddle/utils_paddle.py", line 500, in G_Jacobian target_gradients=grad_out)[0] IndexError: list index out of range

原因就是那个gradients结果为空,所以取值报错。 谢谢,

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#22377
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7