Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #22362

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 1月 18, 2020 by saxon_zh@saxon_zhGuest

dygraph

Created by: leonleeldc

Hi,

Not sure why this happens.

I defined a class as following with fluid.dygraph.Layer.

class DeConv2D(fluid.dygraph.Layer):
    def __init__(self,
            name_scope,
            num_filters=64,
            filter_size=7,
            stride=1,
            stddev=0.02,
            padding=[0,0],
            outpadding=[0,0,0,0],
            relu=True,
            norm=True,
            relufactor=0.0,
            use_bias=False
            ):
        super(DeConv2D,self).__init__(name_scope)

        if use_bias == False:
            de_bias_attr = False
        else:
            de_bias_attr = fluid.ParamAttr(name="de_bias",initializer=fluid.initializer.Constant(0.0))

        self._deconv = Conv2DTranspose(self.full_name(),
                                        num_filters,
                                        filter_size=filter_size,
                                        stride=stride,
                                        padding=padding,
                                        param_attr=fluid.ParamAttr(
                                            name="this_is_deconv_weights",
                                            initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=stddev)),
                                        bias_attr=de_bias_attr)



        if norm:
            self.bn = BatchNorm(self.full_name(),
                num_channels=num_filters,
                param_attr=fluid.ParamAttr(
                    name="de_wights",
                    initializer=fluid.initializer.NormalInitializer(1.0, 0.02)),
                bias_attr=fluid.ParamAttr(name="de_bn_bias",initializer=fluid.initializer.Constant(0.0)),
                trainable_statistics=True)        
        self.outpadding = outpadding
        self.relufactor = relufactor
        self.use_bias = use_bias
        self.norm = norm
        self.relu = relu

    def forward(self,inputs):
        #todo: add use_bias
        #if self.use_bias==False:
        with fluid.dygraph.guard():
            conv = self._deconv(inputs)
                  #else:
            #    conv = self._deconv(inputs)
            conv = fluid.layers.pad2d(conv, paddings=self.outpadding, mode='constant', pad_value=0.0)
            conv = to_variable(conv)
            if self.norm:
                    conv = self.bn(conv)
            if self.relu:
                conv = fluid.layers.leaky_relu(conv,alpha=self.relufactor)
        return conv

But I got the following error when I called this class with a generator defined as following:

class generator(fluid.dygraph.Layer):
    # Network Architecture is exactly same as in infoGAN (https://arxiv.org/abs/1606.03657)
    # Architecture : FC1024_BR-FC7x7x128_BR-(64)4dc2s_BR-(1)4dc2s_S
    # from the main, we can see that input_dim=62, input_size=32 and output_dim=1
    def __init__(self, name_scope, input_dim=62, output_dim=1, input_size=32, norm=True):
        super(generator, self).__init__(name_scope)
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.input_size = input_size

        self.fc = Linear(name_scope=name_scope + '_fc', input_size=self.input_dim,
                         output_size=128 * (self.input_size // 8) * (self.input_size // 8))
        ##128 * (self.input_size // 8) * (self.input_size // 8)
        if norm:
            with fluid.dygraph.guard():
                self.bn = BatchNorm(self.full_name(),
                    num_channels=128 * (self.input_size // 8) * (self.input_size // 8),
                    param_attr=fluid.ParamAttr(
                        name="scale",
                        initializer=fluid.initializer.NormalInitializer(1.0,0.02)),
                    bias_attr=fluid.ParamAttr(
                        name="bias",
                        initializer=fluid.initializer.Constant(0.0)),
                    trainable_statistics=True
                    )

        self.deconv = DeConv2D(self.full_name(),
                               num_filters=128,
                               filter_size=4,
                               stride=2,
                               stddev=0.02,
                               padding=[1, 1],
                               outpadding=[0, 1, 0, 1]
                               )

    def forward(self, input):
        x = self.fc(input)
        x = self.bn(x)
        x = fluid.layers.relu(x)
        x = fluid.layers.reshape(x, [-1, 128, (self.input_size // 8), (self.input_size // 8)])
        x = self.deconv(to_variable(x))
        #print('size of x in forward discriminator:{}'.format(x.shape))
        return x

The error information is as follows.

PaddleCheckError: unsupported type , must be Variable, list[Variable] or tuple[Variable] at [/paddle/paddle/fluid/pybind/imperative.cc:143]

The error line is conv = self.bn(conv).

Thanks,

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#22362
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7