Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #21363

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 11月 26, 2019 by saxon_zh@saxon_zhGuest

operator < linear_chain_crf > error : Expected static_cast<size_t>(*std::max_element(lbl, lbl + seq_length)) < tag_num, but received static_cast<size_t>(*std::max_element(lbl, lbl + seq_length)):22 >= tag_num:7. An invalid tag label that execesses the ...

Created by: Melonzhou

paddle-cpu-1.6.0 组网部分: `def create_net(slots, is_inference=False): """create net""" text_a = slots[0] text_a_mask = slots[1] text_a_lens = slots[2] label_a = slots[3] label_a_mask = slots[4] label_a_lens = slots[5]

unpad_words_emb  = fluid.layers.sequence_unpad(text_a, length=text_a_lens)
unpad_labels = fluid.layers.sequence_unpad(label_a, length=label_a_lens)


word_emb_dim = 768
grnn_hidden_dim = 768
emb_lr = 5
crf_lr = 0.2
bigru_num = 2
init_bound = 0.1
vocab_size = 17964
num_labels = 7

def _bigru_layer(input_feature):
    """
    define the bidirectional gru layer
    """
    pre_gru = fluid.layers.fc(
        input=input_feature,
        size=grnn_hidden_dim * 3,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Uniform(
                low=-init_bound, high=init_bound),
            regularizer=fluid.regularizer.L2DecayRegularizer(
                regularization_coeff=1e-4)))
    gru = fluid.layers.dynamic_gru(
        input=pre_gru,
        size=grnn_hidden_dim,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Uniform(
                low=-init_bound, high=init_bound),
            regularizer=fluid.regularizer.L2DecayRegularizer(
                regularization_coeff=1e-4)))

    pre_gru_r = fluid.layers.fc(
        input=input_feature,
        size=grnn_hidden_dim * 3,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Uniform(
                low=-init_bound, high=init_bound),
            regularizer=fluid.regularizer.L2DecayRegularizer(
                regularization_coeff=1e-4)))
    gru_r = fluid.layers.dynamic_gru(
        input=pre_gru_r,
        size=grnn_hidden_dim,
        is_reverse=True,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Uniform(
                low=-init_bound, high=init_bound),
            regularizer=fluid.regularizer.L2DecayRegularizer(
                regularization_coeff=1e-4)))

    bi_merge = fluid.layers.concat(input=[gru, gru_r], axis=1)
    return bi_merge


word_embedding = fluid.layers.embedding(
    input=unpad_words_emb,
    size=[vocab_size, word_emb_dim],
    dtype='float32',
    param_attr=fluid.ParamAttr(
        learning_rate=emb_lr,
        name="word_emb",
        initializer=fluid.initializer.Uniform(
            low=-init_bound, high=init_bound)))

input_feature = word_embedding
for i in range(bigru_num):
    bigru_output = _bigru_layer(input_feature)
    input_feature = bigru_output

emission = fluid.layers.fc(
    size=num_labels,
    input=bigru_output,
    param_attr=fluid.ParamAttr(
        initializer=fluid.initializer.Uniform(
            low=-init_bound, high=init_bound),
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=1e-4)))
crf_cost = fluid.layers.linear_chain_crf(
    input=emission,
    label=unpad_labels,
    param_attr=fluid.ParamAttr(
        name='crfw',
        learning_rate=crf_lr))
crf_decode = fluid.layers.crf_decoding(
    input=emission, param_attr=fluid.ParamAttr(name='crfw'))

if is_inference:
    feed_targets_name = [text_a.name, text_a_lens.name]
    output_targets_name = [crf_decode]
    return feed_targets_name, output_targets_name

avg_cost = fluid.layers.mean(x=crf_cost)
graph_vars = collections.OrderedDict()
graph_vars["loss"] = avg_cost
graph_vars["sequence_label_infer"] = crf_decode
graph_vars["label"] = unpad_labels

(precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks) = fluid.layers.chunk_eval( input=graph_vars["sequence_label_infer"], label=graph_vars["label"], chunk_scheme="plain", num_chunk_types=51)

        graph_vars["precision"] = precision
        graph_vars["recall"] = recall
        graph_vars["f1_score"] = f1_score
        graph_vars["num_infer_chunks"] = num_infer_chunks
        graph_vars["num_label_chunks"] = num_label_chunks
        graph_vars["num_correct_chunks"] = num_correct_chunks

`

数据及label_map.json image image image 报错信息


Error Message Summary:

PaddleCheckError: Expected static_cast<size_t>(*std::max_element(lbl, lbl + seq_length)) < tag_num, but received static_cast<size_t>(*std::max_element(lbl, lbl + seq_length)):22 >= tag_num:7. An invalid tag label that execesses the largest tag number. at [/home/teamcity/work/ef54dc8a5b211854/paddle/fluid/operators/linear_chain_crf_op.h:207] [operator < linear_chain_crf > error]

没理解这个22和7是从哪里来的

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#21363
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7