Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #20810

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 10月 24, 2019 by saxon_zh@saxon_zhGuest

给模型加上namespace之后,namespace的名字变成两份的问题

Created by: mensaochun

给模型加上namespace之后 image

namespace的名字变成两份: image

可复现的代码

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.transpiler.details.program_utils import program_to_code

class MobileNetV2():
    def __init__(self, scale=1.0, emb_dim=512, fix_net=False, emb_bn=False):
        self.scale = scale
        self.fix_net = fix_net  # FIXME: not use!
        self.emb_dim = emb_dim
        self.emb_bn = emb_bn

    def net(self, input):
        scale = self.scale
        bottleneck_params_list = [
            (1, 16, 1, 1),
            (6, 24, 2, 2),
            (6, 32, 3, 2),
            (6, 64, 4, 2),
            (6, 96, 3, 1),
            (6, 160, 3, 2),
            (6, 320, 1, 1),
        ]

        # conv1
        input = self.conv_bn_layer(
            input,
            num_filters=int(32 * scale),
            filter_size=3,
            stride=2,
            padding=1,
            if_act=True,
            name='conv1_1')

        # bottleneck sequences
        i = 1
        in_c = int(32 * scale)
        for layer_setting in bottleneck_params_list:
            t, c, n, s = layer_setting
            i += 1
            input = self.invresi_blocks(
                input=input,
                in_c=in_c,
                t=t,
                c=int(c * scale),
                n=n,
                s=s,
                name='conv' + str(i))
            in_c = int(c * scale)
        # last_conv
        input = self.conv_bn_layer(
            input=input,
            num_filters=int(1280 * scale) if scale > 1.0 else 1280,
            filter_size=1,
            stride=1,
            padding=0,
            if_act=True,
            name='conv9')

        emb = fluid.layers.fc(
            input=input,
            size=self.emb_dim,
            act=None,
            name='fc_0',
            param_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.NormalInitializer(0.0, 0.01)),
            bias_attr=fluid.param_attr.ParamAttr(
                initializer=fluid.initializer.ConstantInitializer()))
        if self.emb_bn:
            print('Add bn after embedding...')
            emb = fluid.layers.batch_norm(input=emb, act=None, use_global_stats=False, name='last_bn')

        return emb

    def conv_bn_layer(self,
                      input,
                      filter_size,
                      num_filters,
                      stride,
                      padding,
                      channels=None,
                      num_groups=1,
                      if_act=True,
                      name=None,
                      use_cudnn=True):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=ParamAttr(name=name + '_weights'),
            bias_attr=False)
        bn_name = name + '_bn'
        bn = fluid.layers.batch_norm(
            input=conv,
            param_attr=ParamAttr(name=bn_name + "_scale"),
            bias_attr=ParamAttr(name=bn_name + "_offset"),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
        if if_act:
            return fluid.layers.relu6(bn)
        else:
            return bn

    def shortcut(self, input, data_residual):
        return fluid.layers.elementwise_add(input, data_residual)

    def inverted_residual_unit(self,
                               input,
                               num_in_filter,
                               num_filters,
                               ifshortcut,
                               stride,
                               filter_size,
                               padding,
                               expansion_factor,
                               name=None):
        num_expfilter = int(round(num_in_filter * expansion_factor))

        channel_expand = self.conv_bn_layer(
            input=input,
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
            if_act=True,
            name=name + '_expand')

        bottleneck_conv = self.conv_bn_layer(
            input=channel_expand,
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            num_groups=num_expfilter,
            if_act=True,
            name=name + '_dwise',
            use_cudnn=False)

        linear_out = self.conv_bn_layer(
            input=bottleneck_conv,
            num_filters=num_filters,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
            if_act=False,
            name=name + '_linear')
        if ifshortcut:
            out = self.shortcut(input=input, data_residual=linear_out)
            return out
        else:
            return linear_out

    def invresi_blocks(self, input, in_c, t, c, n, s, name=None):
        first_block = self.inverted_residual_unit(
            input=input,
            num_in_filter=in_c,
            num_filters=c,
            ifshortcut=False,
            stride=s,
            filter_size=3,
            padding=1,
            expansion_factor=t,
            name=name + '_1')

        last_residual_block = first_block
        last_c = c

        for i in range(1, n):
            last_residual_block = self.inverted_residual_unit(
                input=last_residual_block,
                num_in_filter=last_c,
                num_filters=c,
                ifshortcut=True,
                stride=1,
                filter_size=3,
                padding=1,
                expansion_factor=t,
                name=name + '_' + str(i + 1))
        return last_residual_block


def MobileNetV2_x0_25(emb_dim=512, fix_net=False, emb_bn=False):
    model = MobileNetV2(scale=0.25, emb_dim=emb_dim, fix_net=fix_net, emb_bn=emb_bn)
    return model


def MobileNetV2_x0_5(emb_dim=512, fix_net=False, emb_bn=False):
    model = MobileNetV2(scale=0.5, emb_dim=emb_dim, fix_net=fix_net, emb_bn=emb_bn)
    return model


def MobileNetV2_x0_75(emb_dim=512, fix_net=False, emb_bn=False):
    model = MobileNetV2(scale=0.75, emb_dim=emb_dim, fix_net=fix_net, emb_bn=emb_bn)
    return model


def MobileNetV2_x1_0(emb_dim=512, fix_net=False, emb_bn=False):
    model = MobileNetV2(scale=1.0, emb_dim=emb_dim, fix_net=fix_net, emb_bn=emb_bn)
    return model


def MobileNetV2_x1_5(emb_dim=512, fix_net=False, emb_bn=False):
    model = MobileNetV2(scale=1.5, emb_dim=emb_dim, fix_net=fix_net, emb_bn=emb_bn)
    return model


def MobileNetV2_x2_0(emb_dim=512, fix_net=False, emb_bn=False):
    model = MobileNetV2(scale=2.0, emb_dim=emb_dim, fix_net=fix_net, emb_bn=emb_bn)
    return model


if __name__ == '__main__':
    image = fluid.layers.data(name='image', shape=[3, 112, 112], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    model = MobileNetV2_x1_0(emb_dim=128, fix_net=0, emb_bn=1)
    with fluid.unique_name.guard('MobileNetV2_x1_'):
        emb = model.net(image)
    main_prog = fluid.default_main_program()
    with open('main.program', 'w') as fout:
        program_to_code(main_prog, fout, True)
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#20810
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7