Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #19934

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 9月 23, 2019 by saxon_zh@saxon_zhGuest

strategy.sync_batch_norm=True训练报错, 不使用这个策略可以运行

Created by: Exception-star

  • 版本、环境信息:    1)PaddlePaddle版本:1.5.2    2)GPU:4 个k40m    4)系统环境:linux、Python3.7 cuda:8.0 cudnn:7.2

模型名称 :DANet(Dual Attention Network for Scene Segmentation) 使用数据集名称 :Cityscapes 模型链接 📎 https://arxiv.org/abs/1809.02983

  • 训练信息
图片 图片
  • 问题描述:加了strategy.sync_batch_norm=True报错。不加不会报错

代码片段:

def main(args):
    image_shape = args.crop_size
    image = fluid.layers.data(name='image', shape=[3, image_shape, image_shape], dtype='float32')
    label = fluid.layers.data(name='label', shape=[image_shape, image_shape], dtype='int64')

    batch_size = args.batch_size
    epoch_num = args.epoch_num
    num_classes = args.num_classes
    data_root = args.data_folder

    # program
    start_prog = fluid.default_startup_program()
    train_prog = fluid.default_main_program()

    # clone 必须在优化器之前
    test_prog = train_prog.clone(for_test=True)

    logging.basicConfig(level=logging.INFO, filename='{}/DANet_train_parallel_executor.log'.format(args.log_root),
                        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    logging.info('DANet')
    logging.info(args)

    with fluid.program_guard(train_prog, start_prog):
        with fluid.unique_name.guard():
            # train_py_reader 
            train_py_reader = fluid.io.PyReader(feed_list=[image, label],
                                                capacity=4,
                                                use_double_buffer=True,
                                                iterable=False)
            train_data = cityscapes_train(data_root=data_root,
                                          base_size=args.base_size,
                                          crop_size=args.crop_size,
                                          scale=args.scale,
                                          xmap=False)
            batch_train_data = paddle.batch(paddle.reader.shuffle(
                train_data, buf_size=batch_size * 3),
                batch_size=batch_size,
                drop_last=True)
            train_py_reader.decorate_sample_list_generator(batch_train_data)

            model = get_model(args)
            pred, pred2, pred3 = model(image)
            # print(pred.shape)
            train_loss = loss_fn(pred, pred2, pred3, label)
            train_avg_loss = fluid.layers.mean(train_loss)
            optimizer = optimizer_setting(args)
            optimizer.minimize(train_avg_loss)

            miou, wrong, correct = mean_iou(pred, label, num_classes=num_classes)

    with fluid.program_guard(test_prog, start_prog):
        with fluid.unique_name.guard():
            test_py_reader = fluid.io.PyReader(feed_list=[image, label],
                                               capacity=4,
                                               iterable=False,
                                               use_double_buffer=True)
            val_data = cityscapes_val(data_root=data_root,
                                      base_size=args.base_size,
                                      crop_size=args.crop_size,
                                      scale=args.scale,
                                      xmap=False)
            batch_test_data = paddle.batch(val_data,
                                           batch_size=batch_size,
                                           drop_last=True)
            test_py_reader.decorate_sample_list_generator(batch_test_data)

            model = get_model(args)
            pred, pred2, pred3 = model(image)

            test_loss = loss_fn(pred, pred2, pred3, label)
            test_avg_loss = fluid.layers.mean(test_loss)
            miou, wrong, correct = mean_iou(pred, label, num_classes=19)

    place = fluid.CUDAPlace(0) if args.cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(start_prog)

    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_threads = fluid.core.get_cuda_device_count()
    # exec_strategy.num_iteration_per_drop_scope = 100
    build_strategy = fluid.BuildStrategy()
    build_strategy.sync_batch_norm = True
    build_strategy.enable_inplace = True

    if args.use_data_parallel:
        compiled_train_prog = fluid.compiler.CompiledProgram(train_prog).with_data_parallel(
            loss_name=train_avg_loss.name,
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)
    else:
        compiled_train_prog = train_prog


    # 加载模型
    save_dir = 'checkpoint_parallel_executor/DAnet_better_train_0.1829'
    if os.path.exists(save_dir):
        load_model(save_dir, exe, program=train_prog)

    train_iou_manager = fluid.metrics.Accuracy()
    train_avg_loss_manager = fluid.metrics.Accuracy()
    test_iou_manager = fluid.metrics.Accuracy()
    test_avg_loss_manager = fluid.metrics.Accuracy()
    better_miou_train = 0
    better_miou_test = 0

    # train_loss_title = 'Train_loss'
    # test_loss_title = 'Test_loss'
    #
    # train_iou_title = 'Train_mIOU'
    # test_iou_title = 'Test_mIOU'

    # plot_loss = Ploter(train_loss_title, test_loss_title)
    # plot_iou = Ploter(train_iou_title, test_iou_title)

    for epoch in range(epoch_num):
        prev_time = datetime.now()
        train_avg_loss_manager.reset()
        train_iou_manager.reset()
        logging.info('training, epoch = {}'.format(epoch + 1))
        train_py_reader.start()
        batch_id = 0
        while True:
            try:
                train_fetch_list = [train_avg_loss, miou, wrong, correct]
                train_avg_loss_value, train_iou_value, _, _ = exe.run(program=compiled_train_prog,
                                                                      fetch_list=train_fetch_list)
                # print(pred_s.shape)
                train_iou_manager.update(train_iou_value, weight=batch_size)
                train_avg_loss_manager.update(train_avg_loss_value, weight=batch_size)
                batch_train_str = "epoch: {}, batch: {}, train_avg_loss: {:.6f}, " \
                                  "train_miou: {:.6f}.".format(epoch + 1,
                                                               batch_id + 1,
                                                               train_avg_loss_value[0],
                                                               train_iou_value[0])
                batch_id += 1
                # if batch_id % 30 == 0:
                logging.info(batch_train_str)
                print(batch_train_str)
            except fluid.core.EOFException:
                train_py_reader.reset()
                break
        cur_time = datetime.now()
        h, remainder = divmod((cur_time - prev_time).seconds, 3600)
        m, s = divmod(remainder, 60)
        time_str = " Time %02d:%02d:%02d" % (h, m, s)
        train_str = "epoch: {}, train_avg_loss: {:.6f}, " \
                    "train_miou: {:.6f}.".format(epoch + 1,
                                                 train_avg_loss_manager.eval()[0],
                                                 train_iou_manager.eval()[0])
        print(train_str + time_str + '\n')
        logging.info(train_str + time_str)
        # plot_loss.append(train_loss_title, epoch, train_avg_loss_manager.eval()[0])
        # plot_loss.plot('./DANet_loss.jpg')
        # plot_iou.append(train_iou_title, epoch, train_iou_manager.eval()[0])
        # plot_iou.plot('./DANet_miou.jpg')

        # save_model
        if better_miou_train < train_iou_manager.eval()[0]:
            shutil.rmtree('./checkpoint_parallel_executor/DAnet_better_train_{:.4f}'.format(better_miou_train),
                          ignore_errors=True)
            better_miou_train = train_iou_manager.eval()[0]
            logging.warning('better_train: {:.6f}, epoch: {}, successful save train model!\n'.format(better_miou_train, epoch + 1))
            save_dir = './checkpoint_parallel_executor/DAnet_better_train_{:.4f}'.format(better_miou_train)
            save_model(save_dir, exe, program=train_prog)
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#19934
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7