动态图tensor初始化问题
Created by: achao2013
网络结构如下:
import os
import logging
import functools
import paddle
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Conv2DTranspose, Pool2D, BatchNorm, FC
import numpy as np
import random
logger = logging.getLogger(__name__)
class ConvBNLayer(fluid.dygraph.Layer):
def __init__(self,
name_scope,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
super(ConvBNLayer, self).__init__(name_scope)
self._conv = Conv2D(
self.full_name(),
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
bias_attr=None)
self._batch_norm = BatchNorm(self.full_name(), num_filters, act=act)
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
class Bottleneck(fluid.dygraph.Layer):
expansion = 2
def __init__(self,
name_scope,
num_channels,
num_filters,
stride=1,
downsample=None):
super(Bottleneck, self).__init__(name_scope)
self.conv0 = ConvBNLayer(
self.full_name(),
num_channels=num_channels,
num_filters=num_channels,
filter_size=1,
act='relu')
self.conv1 = ConvBNLayer(
self.full_name(),
num_channels=num_channels,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu')
self.conv2 = ConvBNLayer(
self.full_name(),
num_channels=num_filters,
num_filters=num_filters,
filter_size=1,
act=None)
self.downsample = downsample
self._num_channels_out = num_filters * stride
def forward(self, inputs):
y = self.conv0(inputs)
conv1 = self.conv1(y)
conv2 = self.conv2(conv1)
if self.downsample is not None:
#print self.downsample
residual = self.downsample(inputs)
else:
residual = inputs
#print(self.downsample, paddle.fluid.layers.shape(residual))
y = fluid.layers.elementwise_add(x=residual, y=conv2)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
def conv3x3(name, out_planes, stride=1):
"""3x3 convolution with padding"""
return Conv2D(name, out_planes, filter_size=3, stride=stride,
padding=1)
class BasicBlock(fluid.dygraph.Layer):
expansion = 1
def __init__(self, name_scope, inchannels, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__(name_scope)
self.conv1 = conv3x3(self.full_name(), planes, stride)
self.bn1 = BatchNorm(self.full_name(), planes, act="relu")
self.conv2 = conv3x3(self.full_name(), planes)
self.bn2 = BatchNorm(self.full_name(), planes, act="relu")
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
y = fluid.layers.elementwise_add(x=residual, y=out)
layer_helper = LayerHelper(self.full_name(), act='relu')
return layer_helper.append_activation(y)
class Conv2dTransposeBNLayer(fluid.dygraph.Layer):
def __init__(self,
name_scope,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
super(Conv2dTransposeBNLayer, self).__init__(name_scope)
self._deconv = Conv2DTranspose(
self.full_name(),
num_filters=num_filters,
filter_size=filter_size,
stride=filter_size,
padding=0,
groups=groups,
act=None,
bias_attr=None)
self._batch_norm = BatchNorm(self.full_name(), num_filters, act=act)
def forward(self, inputs):
y = self._deconv(inputs)
y = self._batch_norm(y)
return y
class Sequential(fluid.dygraph.Layer):
def __init__(self, scope_name, layers):
super(Sequential, self).__init__(scope_name)
self.layers=layers
def forward(self, x):
for layer in self.layers:
if layer is not None:
x=layer.forward(x)
return x
class DirectConnect(fluid.dygraph.Layer):
def __init__(self, scope_name):
super(DirectConnect, self).__init__(scope_name)
def forward(self, x):
return x
class SuperNet(fluid.dygraph.Layer):
def __init__(self, scope_name, depth, width, planes, num_blocks):
super(SuperNet, self).__init__(scope_name)
self.depth = depth
self.width = width
self.planes = planes
self.num_blocks = num_blocks
self.dc = DirectConnect(self.full_name())
# stem net
self.conv1 = ConvBNLayer(self.full_name(), 3, 64, 3, 2,
act='relu')
self.conv2 = ConvBNLayer(self.full_name(), 64, 64, 3, 2,
act='relu')
self.layer1 = self.make_stem_layer(Bottleneck, 64, 64, 4)
self.stage_start = self.make_stage(0, 1, depth)
self.stages=[]
for i in range(width):
self.stages.append(self.make_stage(i+1, depth, depth))
self.stage_end = self.make_stage(width+1, depth, 1)
self.last_layer1 = ConvBNLayer(self.full_name(), 3, 3, 1, 1, act='relu')
self.last_layer2 = Conv2D(
name_scope=self.full_name(),
num_filters=3,
filter_size=1,
stride=1,
padding=0)
def make_stem_layer(self, block, inplanes, planes, blocks, stride=1):
layers = []
subblock = self.add_sublayer('stem_b_%d' % (0),block(self.full_name(), inplanes, planes, stride))
layers.append(subblock)
inplanes = planes * block.expansion
for i in range(1, blocks):
subblock = self.add_sublayer('stem_b_%d'%(i),block(self.full_name(), planes, planes, 1))
layers.append(subblock)
return Sequential(self.full_name(), layers)
def make_layer(self, block, stageidx, inidx, outidx, blocknum):
downsample = None
delta = outidx-inidx
layers = []
inplanes = (inidx+1)*self.planes
outplanes = (outidx+1)*self.planes
stride = 2**(abs(delta))
if delta ==0:
subblock = self.add_sublayer('s_%d_%d_%d_b_%d' % (stageidx, inidx, outidx, 0), block(self.full_name(), inplanes, outplanes, stride, downsample=downsample))
elif delta>0:
downsample = ConvBNLayer(self.full_name(), inplanes, outplanes,
filter_size=1, stride=stride)
subblock = self.add_sublayer('s_%d_%d_%d_b_%d' % (stageidx, inidx, outidx, 0), block(self.full_name(), inplanes, outplanes, stride, downsample=downsample))
else:
subblock = None #upsample
subblock = self.add_sublayer('s_%d_%d_%d_b_%d' % (stageidx, inidx, outidx, 0), Conv2dTransposeBNLayer(self.full_name(), inplanes, outplanes, stride))
layers.append(subblock)
for i in range(1, blocknum):
subblock = self.add_sublayer('s_%d_%d_%d_b_%d'%(stageidx, inidx, outidx, i),block(self.full_name(), outplanes, outplanes, 1))
layers.append(subblock)
return Sequential(self.full_name(), layers)
def make_stage(self, stageidx, innum, outnum):
stage_layers=[]
for i in range(outnum):
stage_layer=[]
for j in range(innum):
layerij = self.make_layer(Bottleneck, stageidx, j, i, self.num_blocks)
stage_layer.append(layerij)
stage_layers.append(stage_layer)
return stage_layers
def forward(self, x, arch):
x = self.conv1(x)
x = self.conv2(x)
x = self.layer1(x)
vlist=arch[0]
x_list=[]
for i in range(len(vlist)):
print('stem start ',i)
v=vlist[i]
if v==0:
x_list.append(None)
elif v==1:
x_list.append(self.dc(x))
elif v==2:
x_list.append(self.stage_start[i][0](x))
y_list=[]
for m in range(len(x_list)):
y_list.append(None)
for i in range(len(self.stages)):
varr=arch[1][i]
for m in range(len(varr)):
for n in range(len(varr[m])):
print('stage:', i,' m:',m, ' n:',n)
if y_list[m] is None:
print('ylist_[m] is None')
if varr[m][n]==1:
assert(x_list[m] is not None)
print('1')
y_list[m]=self.dc(x_list[n])
print('1 end')
elif varr[m][n]==2:
assert(x_list[m] is not None)
print('2')
y_list[m] = self.stages[i][m][n](x_list[n])
print('2 end')
else:
print('ylist_[m] is not None')
if varr[m][n] == 1:
assert(x_list[m] is not None)
print('1')
y_list[m] = y_list[m] + self.dc(x_list[n])
print('1 end')
elif varr[m][n] == 2:
assert(x_list[m] is not None)
print('2')
y_list[m] = y_list[m] + self.stages[i][m][n](x_list[n])
print('2 end')
vlist = arch[-1]
out=None
for i in range(len(vlist)):
if out is None:
if vlist[i]==1:
out = self.dc(y_list[i])
elif vlist[i]==2:
out = self.stage_end[0][i](y_list[i])
else:
if vlist[i] == 1:
out = out+self.dc(y_list[i])
elif vlist[i] ==2:
out = out+self.stage_end[0][i](y_list[i])
out = self.last_layer1(out)
out = self.last_layer2(out)
out = paddle.fluid.layers.resize_bilinear(out, out_shape=[256, 256])
out = fluid.layers.sigmoid(out)
return out