Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #19495

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 8月 28, 2019 by saxon_zh@saxon_zhGuest

动态图tensor初始化问题

Created by: achao2013

动态图运行报错: image

网络结构如下:

import os
import logging
import functools
import paddle
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Conv2DTranspose, Pool2D, BatchNorm, FC

import numpy as np
import random



logger = logging.getLogger(__name__)

class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
        super(ConvBNLayer, self).__init__(name_scope)

        self._conv = Conv2D(
            self.full_name(),
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=groups,
            act=None,
            bias_attr=None)

        self._batch_norm = BatchNorm(self.full_name(), num_filters, act=act)

    def forward(self, inputs):
        y = self._conv(inputs)
        y = self._batch_norm(y)

        return y


class Bottleneck(fluid.dygraph.Layer):
    expansion = 2
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 stride=1,
                 downsample=None):
        super(Bottleneck, self).__init__(name_scope)

        self.conv0 = ConvBNLayer(
            self.full_name(),
            num_channels=num_channels,
            num_filters=num_channels,
            filter_size=1,
            act='relu')
        self.conv1 = ConvBNLayer(
            self.full_name(),
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu')
        self.conv2 = ConvBNLayer(
            self.full_name(),
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=1,
            act=None)

        self.downsample = downsample

        self._num_channels_out = num_filters * stride

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.downsample is not None:
            #print self.downsample
            residual = self.downsample(inputs)
        else:
            residual = inputs

        #print(self.downsample, paddle.fluid.layers.shape(residual))
        y = fluid.layers.elementwise_add(x=residual, y=conv2)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)

def conv3x3(name, out_planes, stride=1):
    """3x3 convolution with padding"""
    return Conv2D(name, out_planes, filter_size=3, stride=stride,
                     padding=1)


class BasicBlock(fluid.dygraph.Layer):
    expansion = 1

    def __init__(self, name_scope, inchannels, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__(name_scope)
        self.conv1 = conv3x3(self.full_name(), planes, stride)
        self.bn1 = BatchNorm(self.full_name(), planes, act="relu")
        self.conv2 = conv3x3(self.full_name(), planes)
        self.bn2 = BatchNorm(self.full_name(), planes, act="relu")
        self.downsample = downsample

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        y = fluid.layers.elementwise_add(x=residual, y=out)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)

class Conv2dTransposeBNLayer(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 filter_size,
                 stride=1,
                 groups=1,
                 act=None):
        super(Conv2dTransposeBNLayer, self).__init__(name_scope)

        self._deconv = Conv2DTranspose(
            self.full_name(),
            num_filters=num_filters,
            filter_size=filter_size,
            stride=filter_size,
            padding=0,
            groups=groups,
            act=None,
            bias_attr=None)

        self._batch_norm = BatchNorm(self.full_name(), num_filters, act=act)

    def forward(self, inputs):
        y = self._deconv(inputs)
        y = self._batch_norm(y)

        return y



class Sequential(fluid.dygraph.Layer):
    def __init__(self, scope_name, layers):
        super(Sequential, self).__init__(scope_name)
        self.layers=layers
    def forward(self, x):
        
        for layer in self.layers:
            if layer is not None:
                x=layer.forward(x)
        return x

class DirectConnect(fluid.dygraph.Layer):
    def __init__(self, scope_name):
        super(DirectConnect, self).__init__(scope_name)
    def forward(self, x):
        return x


class SuperNet(fluid.dygraph.Layer):
    def __init__(self, scope_name, depth, width, planes, num_blocks):
        super(SuperNet, self).__init__(scope_name)
        self.depth = depth
        self.width = width
        self.planes = planes
        self.num_blocks = num_blocks
        self.dc = DirectConnect(self.full_name())
        # stem net
        self.conv1 = ConvBNLayer(self.full_name(), 3, 64, 3, 2,
                               act='relu')
        self.conv2 = ConvBNLayer(self.full_name(), 64, 64, 3, 2,
                               act='relu')

        self.layer1 = self.make_stem_layer(Bottleneck, 64, 64, 4)

        self.stage_start = self.make_stage(0, 1, depth)
        self.stages=[]
        for i in range(width):
            self.stages.append(self.make_stage(i+1, depth, depth))
        self.stage_end = self.make_stage(width+1, depth, 1)

        self.last_layer1 = ConvBNLayer(self.full_name(), 3, 3, 1, 1, act='relu')
        self.last_layer2 = Conv2D(
                name_scope=self.full_name(),
                num_filters=3,
                filter_size=1,
                stride=1,
                padding=0)



    def make_stem_layer(self, block, inplanes, planes, blocks, stride=1):

        layers = []
        subblock = self.add_sublayer('stem_b_%d' % (0),block(self.full_name(), inplanes, planes, stride))
        layers.append(subblock)
        inplanes = planes * block.expansion
        for i in range(1, blocks):
            subblock = self.add_sublayer('stem_b_%d'%(i),block(self.full_name(), planes, planes, 1))
            layers.append(subblock)

        return Sequential(self.full_name(), layers)


    def make_layer(self, block, stageidx,  inidx, outidx, blocknum):
        downsample = None
        delta = outidx-inidx
        layers = []
        inplanes = (inidx+1)*self.planes
        outplanes = (outidx+1)*self.planes
        stride = 2**(abs(delta))
        if delta ==0:
            subblock = self.add_sublayer('s_%d_%d_%d_b_%d' % (stageidx, inidx, outidx, 0), block(self.full_name(), inplanes, outplanes, stride, downsample=downsample))
        elif delta>0:
            downsample = ConvBNLayer(self.full_name(), inplanes, outplanes,
                             filter_size=1, stride=stride)
            subblock = self.add_sublayer('s_%d_%d_%d_b_%d' % (stageidx, inidx, outidx, 0), block(self.full_name(), inplanes, outplanes, stride, downsample=downsample))
        else:
            subblock = None #upsample
            subblock = self.add_sublayer('s_%d_%d_%d_b_%d' % (stageidx, inidx, outidx, 0), Conv2dTransposeBNLayer(self.full_name(), inplanes, outplanes, stride))

        layers.append(subblock)
        for i in range(1, blocknum):
            subblock = self.add_sublayer('s_%d_%d_%d_b_%d'%(stageidx, inidx, outidx, i),block(self.full_name(), outplanes, outplanes, 1))
            layers.append(subblock)

        return Sequential(self.full_name(), layers)



    def make_stage(self, stageidx, innum, outnum):
        stage_layers=[]
        for i in range(outnum):
            stage_layer=[]
            for j in range(innum):
                layerij = self.make_layer(Bottleneck, stageidx, j, i, self.num_blocks)
                stage_layer.append(layerij)
            stage_layers.append(stage_layer)
        return stage_layers



    def forward(self, x, arch):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.layer1(x)
        vlist=arch[0]
        x_list=[]
        for i in range(len(vlist)):
            print('stem start ',i)
            v=vlist[i]
            if v==0:
                x_list.append(None)
            elif v==1:
                x_list.append(self.dc(x))
            elif v==2:
                x_list.append(self.stage_start[i][0](x))

        y_list=[]
        for m in range(len(x_list)):
            y_list.append(None)
        for i in range(len(self.stages)):
            varr=arch[1][i]
            for m in range(len(varr)):
                for n in range(len(varr[m])):
                    print('stage:', i,' m:',m, ' n:',n)
                    if y_list[m] is None:
                        print('ylist_[m] is None')
                        if varr[m][n]==1:
                            assert(x_list[m] is not None)
                            print('1')
                            y_list[m]=self.dc(x_list[n])
                            print('1 end')
                        elif varr[m][n]==2:
                            assert(x_list[m] is not None)
                            print('2')
                            y_list[m] = self.stages[i][m][n](x_list[n])
                            print('2 end')
                    else:
                        print('ylist_[m] is not None')
                        if varr[m][n] == 1:
                            assert(x_list[m] is not None)
                            print('1')
                            y_list[m] = y_list[m] + self.dc(x_list[n])
                            print('1 end')
                        elif varr[m][n] == 2:
                            assert(x_list[m] is not None)
                            print('2')
                            y_list[m] = y_list[m] + self.stages[i][m][n](x_list[n])
                            print('2 end')

        vlist = arch[-1]
        out=None
        for i in range(len(vlist)):
            if out is None:
                if vlist[i]==1:
                    out = self.dc(y_list[i])
                elif vlist[i]==2:
                    out = self.stage_end[0][i](y_list[i])
            else:
                if vlist[i] == 1:
                    out = out+self.dc(y_list[i])
                elif vlist[i] ==2:
                    out = out+self.stage_end[0][i](y_list[i])


        out = self.last_layer1(out)
        out = self.last_layer2(out)
        out = paddle.fluid.layers.resize_bilinear(out, out_shape=[256, 256])
        out = fluid.layers.sigmoid(out)

        return out
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#19495
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7