fill_constant error
Created by: Bella-Zhao
报错信息:
terminate called after throwing an instance of 'paddle::platform::EnforceNotMet'
what(): Invoke operator fill_constant error.
Python Callstacks:
File "/home/work/zhaoyijin/disk2-zhaoyijin/ffm/paddle_release_home/python/lib/python2.7/site-packages/paddle/fluid/framework.py", line 1771, in append_op
attrs=kwargs.get("attrs", None))
File "/home/work/zhaoyijin/disk2-zhaoyijin/ffm/paddle_release_home/python/lib/python2.7/site-packages/paddle/fluid/layer_helper.py", line 43, in append_op
return self.main_program.current_block().append_op(*args, **kwargs)
File "/home/work/zhaoyijin/disk2-zhaoyijin/ffm/paddle_release_home/python/lib/python2.7/site-packages/paddle/fluid/layers/tensor.py", line 412, in fill_constant
stop_gradient=True)
File "/home/disk2/zhaoyijin/ffm/model_train/network_conf_new.py", line 119, in ffm_model
context_user_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
File "local_train.py", line 31, in train
loss, auc, data_list = ffm_model(args.embedding_size, dict_size)
File "local_train.py", line 72, in <module>
train()
C++ Callstacks:
Enforce failed. Expected numel() >= 0, but received numel():-10 < 0:0.
When calling this method, the Tensor's numel must be equal or larger than zero. Please check Tensor::Resize has been called first. at [/paddle/paddle/fluid/framework/tensor.cc:43]
PaddlePaddle Call Stacks:
0 0x7f10f4d90bf8p void paddle::platform::EnforceNotMet::Init<std::string>(std::string, char const*, int) + 360
1 0x7f10f4d90f47p paddle::platform::EnforceNotMet::EnforceNotMet(std::string const&, char const*, int) + 87
2 0x7f10f61148a8p paddle::framework::Tensor::mutable_data(boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_>, paddle::framework::proto::VarType_Type, unsigned long) + 776
3 0x7f10f50a775ep paddle::operators::FillConstantKernel<float>::Compute(paddle::framework::ExecutionContext const&) const + 494
4 0x7f10f50a78b3p std::_Function_handler<void (paddle::framework::ExecutionContext const&), paddle::framework::OpKernelRegistrarFunctor<paddle::platform::CPUPlace, false, 0ul, paddle::operators::FillConstantKernel<float>, paddle::operators::FillConstantKernel<double>, paddle::operators::FillConstantKernel<long>, paddle::operators::FillConstantKernel<int>, paddle::operators::FillConstantKernel<paddle::platform::float16> >::operator()(char const*, char const*, int) const::{lambda(paddle::framework::ExecutionContext const&)#1}>::_M_invoke(std::_Any_data const&, paddle::framework::ExecutionContext const&) + 35
5 0x7f10f60d9627p paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&, paddle::framework::RuntimeContext*) const + 375
6 0x7f10f60d9d91p paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) const + 529
7 0x7f10f60d7c3bp paddle::framework::OperatorBase::Run(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) + 267
8 0x7f10f4f3b366p paddle::framework::HogwildWorker::TrainFiles() + 278
9 0x7f11059278a0p
10 0x7f12099071c3p
11 0x7f1208f2f12dp clone + 109
code:
def ffm_model(embedding_size, dict_size):
input_list = create_input_variable()
label = fluid.layers.data(
name='label', shape=[1], dtype='float32')
dict_emb = create_emb(embedding_size, input_list, dict_size) # feature_name : {field: emb}
# 同域的emb做sum pooling
context_user_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
context_doc_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
user_context_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
user_doc_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
doc_context_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
doc_user_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
# context
for feature_name in global_def.CONTEXT_FEATURE_LIST:
print dict_emb[feature_name]['user']
context_user_emb += dict_emb[feature_name]['user']
context_doc_emb += dict_emb[feature_name]['doc']
# user
for feature_name in global_def.USER_FEATURE_LIST:
user_context_emb += dict_emb[feature_name]['context']
user_doc_emb += dict_emb[feature_name]['doc']
# doc
for feature_name in global_def.DOC_FEATURE_LIST:
doc_context_emb += dict_emb[feature_name]['context']
doc_user_emb += dict_emb[feature_name]['user']
field_cross_interaction = fluid.layers.reduce_sum(user_doc_emb * doc_user_emb \
+ user_context_emb * context_user_emb \
+ doc_context_emb * context_doc_emb, dim=1, keep_dim=True)
bias = fluid.layers.create_parameter(shape=[1], dtype="float32", name='bias')
predict = fluid.layers.sigmoid(field_cross_interaction + bias)
cost = fluid.layers.log_loss(input=predict, label=label)
batch_cost = fluid.layers.reduce_sum(cost)
# for auc
predict_2d = fluid.layers.concat([1 - predict, predict], 1)
label_int = fluid.layers.cast(label, 'int64')
auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict_2d,
label=label_int,
slide_steps=0)
city_code, device_info, refresh_time, \
age, gender, educational, \
nid, mthid, manual_tags, cate_v2, sub_cate_v2 = input_list
return batch_cost, auc_var, [city_code, device_info, refresh_time, \
age, gender, educational, \
nid, mthid, manual_tags, cate_v2, sub_cate_v2, \
label]
def create_emb(emb_size, input_list, dict_size):
city_code, device_info, refresh_time, \
age, gender, educational, \
nid, mthid, manual_tags, cate_v2, sub_cate_v2 = input_list
dict_emb = {} # feature_name : {field: emb}
for feature_name in global_def.CONTEXT_FEATURE_LIST:
feature_dict_dize = dict_size[feature_name]
user_emb = fluid.layers.embedding(
input=eval(feature_name), size=[feature_dict_dize, emb_size],
param_attr=fluid.ParamAttr(name="_proj_" + feature_name,
initializer=fluid.initializer.Normal(scale=1/math.sqrt(feature_dict_dize))),
is_sparse=False, is_distributed=False)
doc_emb = fluid.layers.embedding(
input=eval(feature_name), size=[feature_dict_dize, emb_size],
param_attr=fluid.ParamAttr(name="_proj_" + feature_name,
initializer=fluid.initializer.Normal(scale=1/math.sqrt(feature_dict_dize))),
is_sparse=False, is_distributed=False)
dict_emb[feature_name] = {}
dict_emb[feature_name]['user'] = user_emb
dict_emb[feature_name]['doc'] = doc_emb
for feature_name in global_def.USER_FEATURE_LIST:
feature_dict_dize = dict_size[feature_name]
context_emb = fluid.layers.embedding(
input=eval(feature_name), size=[feature_dict_dize, emb_size],
param_attr=fluid.ParamAttr(name="_proj_" + feature_name,
initializer=fluid.initializer.Normal(scale=1/math.sqrt(feature_dict_dize))),
is_sparse=False, is_distributed=False)
doc_emb = fluid.layers.embedding(
input=eval(feature_name), size=[feature_dict_dize, emb_size],
param_attr=fluid.ParamAttr(name="_proj_" + feature_name,
initializer=fluid.initializer.Normal(scale=1/math.sqrt(feature_dict_dize))),
is_sparse=False, is_distributed=False)
dict_emb[feature_name] = {}
dict_emb[feature_name]['context'] = context_emb
dict_emb[feature_name]['doc'] = doc_emb
for feature_name in global_def.DOC_FEATURE_LIST:
feature_dict_dize = dict_size[feature_name]
context_emb = fluid.layers.embedding(
input=eval(feature_name), size=[feature_dict_dize, emb_size],
param_attr=fluid.ParamAttr(name="_proj_" + feature_name,
initializer=fluid.initializer.Normal(scale=1/math.sqrt(feature_dict_dize))),
is_sparse=False, is_distributed=False)
user_emb = fluid.layers.embedding(
input=eval(feature_name), size=[feature_dict_dize, emb_size],
param_attr=fluid.ParamAttr(name="_proj_" + feature_name,
initializer=fluid.initializer.Normal(scale=1/math.sqrt(feature_dict_dize))),
is_sparse=False, is_distributed=False)
if feature_name in ['manual_tags', 'sub_cate_v2']:
context_emb_avg = fluid.layers.sequence_pool(input=context_emb, pool_type='average')
user_emb_avg = fluid.layers.sequence_pool(input=user_emb, pool_type='average')
dict_emb[feature_name] = {}
dict_emb[feature_name]['context'] = context_emb_avg
dict_emb[feature_name]['user'] = user_emb_avg
else:
dict_emb[feature_name] = {}
dict_emb[feature_name]['context'] = context_emb
dict_emb[feature_name]['user'] = user_emb
return dict_emb
code说明:模型实现了FFM,想要对不同域的embedding做sum pooling操作。在循环中用context_user_emb += ...的操作,所以需要在循环外先定义变量context_user_emb,可能报错是从这里出来的:
context_user_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)