Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #19440

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 8月 27, 2019 by saxon_zh@saxon_zhGuest

fill_constant error

Created by: Bella-Zhao

报错信息:

terminate called after throwing an instance of 'paddle::platform::EnforceNotMet'
  what():  Invoke operator fill_constant error.
Python Callstacks:
  File "/home/work/zhaoyijin/disk2-zhaoyijin/ffm/paddle_release_home/python/lib/python2.7/site-packages/paddle/fluid/framework.py", line 1771, in append_op
    attrs=kwargs.get("attrs", None))
  File "/home/work/zhaoyijin/disk2-zhaoyijin/ffm/paddle_release_home/python/lib/python2.7/site-packages/paddle/fluid/layer_helper.py", line 43, in append_op
    return self.main_program.current_block().append_op(*args, **kwargs)
  File "/home/work/zhaoyijin/disk2-zhaoyijin/ffm/paddle_release_home/python/lib/python2.7/site-packages/paddle/fluid/layers/tensor.py", line 412, in fill_constant
    stop_gradient=True)
  File "/home/disk2/zhaoyijin/ffm/model_train/network_conf_new.py", line 119, in ffm_model
    context_user_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
  File "local_train.py", line 31, in train
    loss, auc, data_list = ffm_model(args.embedding_size, dict_size)
  File "local_train.py", line 72, in <module>
    train()
C++ Callstacks:
Enforce failed. Expected numel() >= 0, but received numel():-10 < 0:0.
When calling this method, the Tensor's numel must be equal or larger than zero. Please check Tensor::Resize has been called first. at [/paddle/paddle/fluid/framework/tensor.cc:43]
PaddlePaddle Call Stacks:
0       0x7f10f4d90bf8p void paddle::platform::EnforceNotMet::Init<std::string>(std::string, char const*, int) + 360
1       0x7f10f4d90f47p paddle::platform::EnforceNotMet::EnforceNotMet(std::string const&, char const*, int) + 87
2       0x7f10f61148a8p paddle::framework::Tensor::mutable_data(boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_>, paddle::framework::proto::VarType_Type, unsigned long) + 776
3       0x7f10f50a775ep paddle::operators::FillConstantKernel<float>::Compute(paddle::framework::ExecutionContext const&) const + 494
4       0x7f10f50a78b3p std::_Function_handler<void (paddle::framework::ExecutionContext const&), paddle::framework::OpKernelRegistrarFunctor<paddle::platform::CPUPlace, false, 0ul, paddle::operators::FillConstantKernel<float>, paddle::operators::FillConstantKernel<double>, paddle::operators::FillConstantKernel<long>, paddle::operators::FillConstantKernel<int>, paddle::operators::FillConstantKernel<paddle::platform::float16> >::operator()(char const*, char const*, int) const::{lambda(paddle::framework::ExecutionContext const&)#1}>::_M_invoke(std::_Any_data const&, paddle::framework::ExecutionContext const&) + 35
5       0x7f10f60d9627p paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&, paddle::framework::RuntimeContext*) const + 375
6       0x7f10f60d9d91p paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) const + 529
7       0x7f10f60d7c3bp paddle::framework::OperatorBase::Run(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) + 267
8       0x7f10f4f3b366p paddle::framework::HogwildWorker::TrainFiles() + 278
9       0x7f11059278a0p
10      0x7f12099071c3p
11      0x7f1208f2f12dp clone + 109

code:

def ffm_model(embedding_size, dict_size):
    input_list = create_input_variable()
    label = fluid.layers.data(
            name='label', shape=[1], dtype='float32')

    dict_emb = create_emb(embedding_size, input_list, dict_size)  # feature_name : {field: emb}

    # 同域的emb做sum pooling
    context_user_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
    context_doc_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
    user_context_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
    user_doc_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
    doc_context_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
    doc_user_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
    # context
    for feature_name in global_def.CONTEXT_FEATURE_LIST:
        print dict_emb[feature_name]['user']
        context_user_emb += dict_emb[feature_name]['user']
        context_doc_emb += dict_emb[feature_name]['doc']
    # user
    for feature_name in global_def.USER_FEATURE_LIST:
        user_context_emb += dict_emb[feature_name]['context']
        user_doc_emb += dict_emb[feature_name]['doc']
    # doc
    for feature_name in global_def.DOC_FEATURE_LIST:
        doc_context_emb += dict_emb[feature_name]['context']
        doc_user_emb += dict_emb[feature_name]['user']

    field_cross_interaction = fluid.layers.reduce_sum(user_doc_emb * doc_user_emb \
            + user_context_emb * context_user_emb \
            + doc_context_emb * context_doc_emb, dim=1, keep_dim=True)

    bias = fluid.layers.create_parameter(shape=[1], dtype="float32", name='bias')

    predict = fluid.layers.sigmoid(field_cross_interaction + bias)

    cost = fluid.layers.log_loss(input=predict, label=label)
    batch_cost = fluid.layers.reduce_sum(cost)

    # for auc
    predict_2d = fluid.layers.concat([1 - predict, predict], 1)
    label_int = fluid.layers.cast(label, 'int64')
    auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict_2d,
                                                          label=label_int,
                                                          slide_steps=0)
    city_code, device_info, refresh_time, \
        age, gender, educational, \
        nid, mthid, manual_tags, cate_v2, sub_cate_v2 = input_list

    return batch_cost, auc_var, [city_code, device_info, refresh_time, \
                age, gender, educational, \
                nid, mthid, manual_tags, cate_v2, sub_cate_v2, \
                label]

def create_emb(emb_size, input_list, dict_size):
    city_code, device_info, refresh_time, \
        age, gender, educational, \
        nid, mthid, manual_tags, cate_v2, sub_cate_v2 = input_list

    dict_emb = {} # feature_name : {field: emb}

    for feature_name in global_def.CONTEXT_FEATURE_LIST:
        feature_dict_dize = dict_size[feature_name]
        user_emb = fluid.layers.embedding(
                input=eval(feature_name), size=[feature_dict_dize, emb_size],
                param_attr=fluid.ParamAttr(name="_proj_" + feature_name,
                    initializer=fluid.initializer.Normal(scale=1/math.sqrt(feature_dict_dize))),
                is_sparse=False, is_distributed=False)
        doc_emb = fluid.layers.embedding(
                input=eval(feature_name), size=[feature_dict_dize, emb_size],
                param_attr=fluid.ParamAttr(name="_proj_" + feature_name,
                    initializer=fluid.initializer.Normal(scale=1/math.sqrt(feature_dict_dize))),
                is_sparse=False, is_distributed=False)
        dict_emb[feature_name] = {}
        dict_emb[feature_name]['user'] = user_emb
        dict_emb[feature_name]['doc'] = doc_emb

    for feature_name in global_def.USER_FEATURE_LIST:
        feature_dict_dize = dict_size[feature_name]
        context_emb = fluid.layers.embedding(
                input=eval(feature_name), size=[feature_dict_dize, emb_size],
                param_attr=fluid.ParamAttr(name="_proj_" + feature_name,
                    initializer=fluid.initializer.Normal(scale=1/math.sqrt(feature_dict_dize))),
                is_sparse=False, is_distributed=False)
        doc_emb = fluid.layers.embedding(
                input=eval(feature_name), size=[feature_dict_dize, emb_size],
                param_attr=fluid.ParamAttr(name="_proj_" + feature_name,
                    initializer=fluid.initializer.Normal(scale=1/math.sqrt(feature_dict_dize))),
                is_sparse=False, is_distributed=False)
        dict_emb[feature_name] = {}
        dict_emb[feature_name]['context'] = context_emb
        dict_emb[feature_name]['doc'] = doc_emb

    for feature_name in global_def.DOC_FEATURE_LIST:
        feature_dict_dize = dict_size[feature_name]
        context_emb = fluid.layers.embedding(
                input=eval(feature_name), size=[feature_dict_dize, emb_size],
                param_attr=fluid.ParamAttr(name="_proj_" + feature_name,
                    initializer=fluid.initializer.Normal(scale=1/math.sqrt(feature_dict_dize))),
                is_sparse=False, is_distributed=False)
        user_emb = fluid.layers.embedding(
                input=eval(feature_name), size=[feature_dict_dize, emb_size],
                param_attr=fluid.ParamAttr(name="_proj_" + feature_name,
                    initializer=fluid.initializer.Normal(scale=1/math.sqrt(feature_dict_dize))),
                is_sparse=False, is_distributed=False)
        if feature_name in ['manual_tags', 'sub_cate_v2']:
            context_emb_avg = fluid.layers.sequence_pool(input=context_emb, pool_type='average')
            user_emb_avg = fluid.layers.sequence_pool(input=user_emb, pool_type='average')
            dict_emb[feature_name] = {}
            dict_emb[feature_name]['context'] = context_emb_avg
            dict_emb[feature_name]['user'] = user_emb_avg
        else:
            dict_emb[feature_name] = {}
            dict_emb[feature_name]['context'] = context_emb
            dict_emb[feature_name]['user'] = user_emb
    return dict_emb

code说明:模型实现了FFM,想要对不同域的embedding做sum pooling操作。在循环中用context_user_emb += ...的操作,所以需要在循环外先定义变量context_user_emb,可能报错是从这里出来的:

context_user_emb = fluid.layers.fill_constant(shape=[-1, embedding_size], dtype='float32', value=0.0)
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#19440
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7