Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #19090

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 8月 09, 2019 by saxon_zh@saxon_zhGuest

conv bn fusion in ocr end2end model

Created by: wanghaoshuang

第一步:dumps trainable variables and moving mean/var

# dump all trainable variable
# --------------------------------------------------------------
 weights={}
for var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
    print("var name: {}; shape: {}".format(var.name, var.shape))
    weights[var.name] = sess.run(var)
for var in tf.get_collection(tf.GraphKeys.VARIABLES):
    if "moving" in var.name:
        print("var name: {}; shape: {}".format(var.name, var.shape))
        weights[var.name] = sess.run(var)
pickle.dump(weights, open('./dumps/tf_weights.data', 'w'))

第二步: fuse weights of conv and bn

import pickle
import numpy as np

file = "./tf_weights.data"

weights = pickle.load(open(file, 'r'))
epsilon = 1e-5

for key in weights.keys():
    if ('conv' in key or 'Conv' in key or 'shortcut' in key) and ('weights' in key or 'W:0' in key):
        if 'weights' in key:
            base_name, _ = key.split('weights')
        if 'W:0' in key:
            base_name, _ = key.split('W')

        if 'encoder' in key:
            epsilon = 1e-3
            print key

        weight_name = key
        gamma_name = ''.join([base_name, "BatchNorm/gamma:0"])
        beta_name = ''.join([base_name, "BatchNorm/beta:0"])
        mean_name = ''.join([base_name, "BatchNorm/moving_mean:0"])
        variance_name = ''.join([base_name, "BatchNorm/moving_variance:0"])
        bias_name = ''.join([base_name, "biases:0"])

        weight = weights[weight_name]
        if gamma_name in weights:
            gamma = weights[gamma_name]
            beta = weights[beta_name]
            mean = weights[mean_name]
            var = weights[variance_name]
            bias = weights[bias_name] if bias_name in weights else 0
            invs = gamma / np.sqrt(var+epsilon)
            weight =  weight * invs.reshape([1,1,1,invs.shape[0]]) # [filter, filter, in_channel, out_channel]
            bias = (bias-mean)*invs + beta
#            print("update weight : [{}]".format(weight_name))
#            print("|--Add bias : [{}]".format(bias_name))
            weights[weight_name] = weight
            weights[bias_name] = bias

pickle.dump(weights, open("./tf_bn_fusion.data", 'w'))

print("-----------dumped bn fusion weights into [./tf_bn_fusion.data]---------------")

第三步 load fused weights

  1. remove bn layer in model.
  2. add bias after conv
  3. load weights:
weights = pickle.load(open('./dumps/tf_bn_fusion.data', 'r'))
graph = tf.get_default_graph()
vars = set([var.name for var in tf.get_collection(tf.GraphKeys.VARIABLES)])
for key in weights:
    if key in vars:
        print("load: {}".format(key))
        target = graph.get_tensor_by_name(key)
        sess.run(tf.assign(target, weights[key], validate_shape=True))
    else:
        print("skip: {}".format(key))
print('-----------------loaded fused weights-----------------')
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#19090
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7