Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #19051

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 8月 07, 2019 by saxon_zh@saxon_zhGuest

保存后模型可视化比模型定义最后输出多了一层scale

Created by: Overtown

image 网络模型最后一层是sigmoid,但是保存下来的模型用netron可视化之后,发现多了scale层,请问是什么问题。网络定义的脚本如下:Net 函数是主体网络结构。

import paddle.fluid as fluid
import cv2, numpy
import os

class Canny():
    def __init__(self, output_channels, base_channels):
        
        self.out_c = output_channels
        self.base_channels = base_channels


    def ConvLayer(self, input_data, out_c, kernel_size, stride):
        # only conv not include relu
        padding_size = kernel_size // 2 
        x = fluid.layers.pad2d(input=input_data, paddings=[padding_size, padding_size, padding_size, padding_size], mode='reflect')

        x = fluid.layers.conv2d(
                input=x, 
                num_filters=out_c,
                filter_size=kernel_size,
                stride=stride,
                padding=0,
                groups=1,
                act=None,
                bias_attr=False,
                name=None)
        
        return x


    def ResidualBlock(self, input_data, channels, kernel_size, stride):
        norm = 'instance_norm' 
        x_conv1 = self.ConvLayer(input_data, channels, kernel_size, stride)
        x_in1 = norm_layer(x_conv1, norm)
        x_relu = fluid.layers.relu(x_in1)
        x_conv2 = self.ConvLayer(x_relu, channels, kernel_size, stride)
        x_in2 = norm_layer(x_conv2, norm)
        x_out = x_in2 + input_data
        
        return x_out


    def ConvInReluLayer(self, input_data, channels, kernel_size, stride):
        norm = 'instance_norm'
        x_conv = self.ConvLayer(input_data, channels, kernel_size, stride)
        x_in = norm_layer(x_conv, norm)
        x_relu = fluid.layers.relu(x_in)

        return x_relu


    def Net(self, input_data):
        
        # Encoder network
        x = self.ConvInReluLayer(input_data, self.base_channels, kernel_size=9, stride=1)  
        x = self.ConvInReluLayer(x, 2*self.base_channels, kernel_size=3, stride=2)  
        x = self.ConvInReluLayer(x, 2*2*self.base_channels, kernel_size=3, stride=2)  
       
        # Residual Network
        for i in range(5):
            x = self.ResidualBlock(x, 2*2*self.base_channels, kernel_size=3, stride=1)
       
        # Decoder Network
        x = fluid.layers.resize_bilinear(x, scale=2.0)        
        x = self.ConvLayer(x, 2*self.base_channels, kernel_size=3, stride=1)
        x = fluid.layers.relu(x)
        
        x = fluid.layers.resize_bilinear(x, scale=2.0)        
        x = self.ConvLayer(x, self.base_channels, kernel_size=3, stride=1)
        x = fluid.layers.relu(x)
        
        x = self.ConvLayer(x, self.out_c, kernel_size=9, stride=1)
        x = fluid.layers.sigmoid(x)
        
        return x

def norm_layer(input, norm_type='batch_norm', name=None, is_test=False):
    #print 'norm:', norm_type
    if norm_type == 'batch_norm':
        param_attr = fluid.ParamAttr(
            name = None if name is None else name + '_w', initializer=fluid.initializer.Constant(1.0))
        bias_attr = fluid.ParamAttr(
            name = None if name is None else name + '_b', initializer=fluid.initializer.Constant(value=0.0))
        return fluid.layers.batch_norm(
            input,
            param_attr=param_attr,
            bias_attr=bias_attr,
            is_test=is_test,
            moving_mean_name=None if name is None else name + '_mean',
            moving_variance_name=None if name is None else name + '_var')

    elif norm_type == 'instance_norm':
        helper = fluid.layer_helper.LayerHelper("instance_norm", **locals())
        dtype = helper.input_dtype()
        epsilon = 1e-5
        mean = fluid.layers.reduce_mean(input, dim=[2, 3], keep_dim=True)
        var = fluid.layers.reduce_mean(
            fluid.layers.square(input - mean), dim=[2, 3], keep_dim=True)
        if name is not None:
            scale_name = name + "_scale"
            offset_name = name + "_offset"
        else:
            scale_name = None
            offset_name = None
        scale_param = fluid.ParamAttr(
            name=scale_name,
            initializer=fluid.initializer.Constant(1.0),
            trainable=True)
        offset_param = fluid.ParamAttr(
            name=offset_name,
            initializer=fluid.initializer.Constant(0.0),
            trainable=True)
        scale = helper.create_parameter(
            attr=scale_param, shape=input.shape[1:2], dtype=dtype)
        offset = helper.create_parameter(
            attr=offset_param, shape=input.shape[1:2], dtype=dtype)

        tmp = fluid.layers.elementwise_mul(x=(input - mean), y=scale, axis=1)
        tmp = tmp / fluid.layers.sqrt(var + epsilon)
        tmp = fluid.layers.elementwise_add(tmp, offset, axis=1)
        return tmp
    else:
        raise NotImplementedError("norm tyoe: [%s] is not support" % norm_type)
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#19051
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7