Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #18798

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 7月 25, 2019 by saxon_zh@saxon_zhGuest

使用with_inference_optimize时报错

Created by: tianjie491

  • 版本、环境信息:paddlepaddle1.5.0    1)PaddlePaddle版本:paddlepaddle1.5.0    2)CPU:i5-7500_CPU_@_3.40GHz    3)GPU:v100    4)系统环境:win10,Python版本:3.5 -预测信息 用CPU或GPU进行预测,使用with_inference_optimize时都会报错,去除下面的代码段则正常 prog_file = "{}/model".format(args.init_checkpoints_type + "/inference_model") params_file = "{}/params".format(args.init_checkpoints_type + "/inference_model") config = fluid.core.AnalysisConfig(prog_file, params_file) type_infer_program = compiler.CompiledProgram(type_infer_program) type_infer_program.with_inference_optimize(config)

报错信息如下: e[1me[35m--- Running analysis [ir_graph_build_pass]e[0m e[1me[35m--- Running analysis [ir_analysis_pass]e[0m e[32m--- Running IR pass [infer_clean_graph_pass]e[0m e[32m--- Running IR pass [attention_lstm_fuse_pass]e[0m e[32m--- Running IR pass [seqconv_eltadd_relu_fuse_pass]e[0m e[32m--- Running IR pass [fc_lstm_fuse_pass]e[0m e[32m--- Running IR pass [mul_lstm_fuse_pass]e[0m e[32m--- Running IR pass [fc_gru_fuse_pass]e[0m e[32m--- Running IR pass [mul_gru_fuse_pass]e[0m e[32m--- Running IR pass [seq_concat_fc_fuse_pass]e[0m e[32m--- Running IR pass [fc_fuse_pass]e[0m e[37m--- detected 74 subgraphse[0m e[32m--- Running IR pass [repeated_fc_relu_fuse_pass]e[0m e[32m--- Running IR pass [squared_mat_sub_fuse_pass]e[0m e[32m--- Running IR pass [conv_bn_fuse_pass]e[0m e[32m--- Running IR pass [conv_eltwiseadd_bn_fuse_pass]e[0m e[32m--- Running IR pass [is_test_pass]e[0m e[32m--- Running IR pass [runtime_context_cache_pass]e[0m e[1me[35m--- Running analysis [ir_params_sync_among_devices_pass]e[0m e[1me[35m--- Running analysis [adjust_cudnn_workspace_size_pass]e[0m e[1me[35m--- Running analysis [inference_op_replace_pass]e[0m e[1me[35m--- Running analysis [ir_graph_to_program_pass]e[0m Traceback (most recent call last): File "E:\tools\PyCharm\helpers\pydev\pydevd.py", line 1758, in main() File "E:\tools\PyCharm\helpers\pydev\pydevd.py", line 1752, in main globals = debugger.run(setup['file'], None, None, is_module) File "E:\tools\PyCharm\helpers\pydev\pydevd.py", line 1147, in run pydev_imports.execfile(file, globals, locals) # execute the script File "E:\tools\PyCharm\helpers\pydev_pydev_imps_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "E:/Project/DBQA/predict_with_csv2.py", line 291, in main(args) File "E:/Project/DBQA/predict_with_csv2.py", line 239, in main type_probs, type_scope) File "E:/Project/DBQA/predict_with_csv2.py", line 157, in prediction scope=scope) File "E:\tools\anaconda\lib\site-packages\paddle\fluid\executor.py", line 668, in run return self._run_inference(program._executor, feed) File "E:\tools\anaconda\lib\site-packages\paddle\fluid\executor.py", line 758, in _run_inference return exe.run(feed) TypeError: run(): incompatible function arguments. The following argument types are supported: 1. (self: paddle.fluid.core_avx.AnalysisPredictor, arg0: List[paddle.fluid.core_avx.PaddleTensor]) -> List[paddle.fluid.core_avx.PaddleTensor]

Invoked with: <paddle.fluid.core_avx.AnalysisPredictor object at 0x000000843BB78A08>, {'read_file_0.tmp_0': array([[[ 1], [ 226], [ 170], [ 4], [ 75], [ 10], [1464], [ 17], [ 11], (中间的也是数字,省略) [1.]]], dtype=float32)} I0725 10:35:23.495776 6368 analysis_predictor.cc:451] == optimize end ==

相关代码片段: ernie_config = ErnieConfig(args.ernie_config_path) # 读取配置参数 if args.use_cuda: # 使用cuda place = fluid.CUDAPlace(int(os.getenv('FLAGS_selected_gpus', '0'))) else: os.environ['CPU_NUM'] = str(1) place = fluid.CPUPlace() exe = fluid.Executor(place)

reader = task_reader.ClassifyReader(
    vocab_path=args.vocab_path,
    label_map_config=args.label_map_config,
    max_seq_len=args.max_seq_len,
    do_lower_case=args.do_lower_case,
    in_tokens=args.in_tokens,
    random_seed=args.random_seed)

startup_prog = fluid.Program()
exe.run(startup_prog)

type_scope = fluid.core.Scope()
with fluid.scope_guard(type_scope):
    type_model_path = os.path.join(args.init_checkpoints_type, "inference_model")
    type_infer_program, type_feed_target_names, type_probs = fluid.io.load_inference_model(
        type_model_path, exe, model_filename='__model__', params_filename='__params__')
    prog_file = "{}/__model__".format(args.init_checkpoints_type + "/inference_model")
    params_file = "{}/__params__".format(args.init_checkpoints_type + "/inference_model")
    config = fluid.core.AnalysisConfig(prog_file, params_file)
    type_infer_program = compiler.CompiledProgram(type_infer_program)
    type_infer_program.with_inference_optimize(config)


wrapper, example_type = reader.pridict_generator(args.law_file,
                                                question,
                                                batch_size=args.batch_size)
index_type = prediction(exe, type_infer_program, wrapper, type_feed_target_names,
                            type_probs, type_scope)

def prediction(exe, prog, predict_data_generator, feed_target_names, probs, scope): index = [] src_ids = feed_target_names[0] sent_ids = feed_target_names[2] pos_ids = feed_target_names[1] input_mask = feed_target_names[3] for sample in predict_data_generator(): src_ids_data = sample[0] sent_ids_data = sample[1] pos_ids_data = sample[2] input_mask_data = sample[3] probs[0].persistable = True np_probs = exe.run( prog, feed={src_ids: src_ids_data, sent_ids: sent_ids_data, pos_ids: pos_ids_data, input_mask: input_mask_data}, fetch_list=probs, scope=scope) index.extend(np_probs[0])

lists = list(np.array(index)[:, 1])
list_new = []
for index, values in enumerate(lists):
    if values > 0.10:
        list_new.append((index, values))
index = sorted(list_new, key=lambda x: x[1], reverse=True)[:args.beam_size]
return index

我看报错说 TypeError: run(): incompatible function arguments. The following argument types are supported: 1. (self: paddle.fluid.core_avx.AnalysisPredictor, arg0: List[paddle.fluid.core_avx.PaddleTensor]) -> List[paddle.fluid.core_avx.PaddleTensor] 但是不使用with_inference_optimize时是正常的,这是为什么?怎么解决?

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#18798
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7