卷积后尺寸问题
Created by: 1286667673
您好:我现在有个问题想请教您
我的输入图像尺寸为:(1, 1, 432, 768)
标签尺寸为:(1, 1, 108, 192)
输入图像经过以下网络计算,计算后的输入图像的尺寸和标签尺寸应不应该一样呢?经过两次池化我感觉是除以4了?为什么老报错elementwise_sub error.
def conv2d_neural_network(self,img):
# 第一个卷积-池化层
S_conv_1 = fluid.layers.conv2d(input=img,filter_size=5,num_filters=24,act="relu")
S_conv_pool_1 = fluid.layers.pool2d(input=S_conv_1, pool_size=2, pool_stride=2)
# 第二个卷积-池化层
S_conv_2 = fluid.layers.conv2d(input=S_conv_pool_1,filter_size=3,num_filters=48,act="relu")
S_conv_pool_2 = fluid.layers.pool2d(input=S_conv_2, pool_size=2, pool_stride=2)
# 第三个卷积
S_conv_pool_3 = fluid.layers.conv2d(input =S_conv_pool_2,num_filters=24,filter_size=3,act="relu")
# 第四个卷积
S_conv_pool_4 = fluid.layers.conv2d(input =S_conv_pool_3,num_filters=12,filter_size=3,act="relu")
y_predict = fluid.layers.conv2d(input =S_conv_pool_4,num_filters=1,filter_size=1,stride=1)
return y_predict