Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #18205

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 6月 19, 2019 by saxon_zh@saxon_zhGuest

多gpu使用报错,数字识别算法

Created by: DianaZhang

系统:ubuntu18.04,4核12G gpu:nvidia410,cuda9.0,cudnn7.3 paddle:1.4.1.post97,安装在python3.6的虚拟环境中 python:python3.6

图片

使用模型,数字识别模型 代码修改部分 图片

错误内容:

W0618 19:40:39.706670 10145 device_context.cc:261] Please NOTE: device: 1, CUDA Capability: 61, Driver API Version: 10.0, Runtime API Version: 9.0
W0618 19:40:39.710006 10145 device_context.cc:269] device: 1, cuDNN Version: 7.0.
W0618 19:40:41.227665 10145 graph.h:204] WARN: After a series of passes, the current graph can be quite different from OriginProgram. So, please avoid using the `OriginProgram()` method!
2019-06-18 19:40:41,227-WARNING: 
     You can try our memory optimize feature to save your memory usage:
         # create a build_strategy variable to set memory optimize option
         build_strategy = compiler.BuildStrategy()
         build_strategy.enable_inplace = True
         build_strategy.memory_optimize = True
         
         # pass the build_strategy to with_data_parallel API
         compiled_prog = compiler.CompiledProgram(main).with_data_parallel(
             loss_name=loss.name, build_strategy=build_strategy)
      
     !!! Memory optimize is our experimental feature !!!
         some variables may be removed/reused internal to save memory usage, 
         in order to fetch the right value of the fetch_list, please set the 
         persistable property to true for each variable in fetch_list
 
         # Sample
         conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None) 
         # if you need to fetch conv1, then:
         conv1.persistable = True
 
                 
I0618 19:40:46.276876 10145 build_strategy.cc:285] SeqOnlyAllReduceOps:0, num_trainers:1
Traceback (most recent call last):
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 267, in <module>
    main(use_cuda=use_cuda, nn_type=predict)
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 249, in main
    params_filename=params_filename)
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 165, in train
    fetch_list=[avg_loss, acc])
  File "/home/cj1/env-python3/lib/python3.6/site-packages/paddle/fluid/executor.py", line 580, in run
    return_numpy=return_numpy)
  File "/home/cj1/env-python3/lib/python3.6/site-packages/paddle/fluid/executor.py", line 446, in _run_parallel
    exe.run(fetch_var_names, fetch_var_name)
paddle.fluid.core.EnforceNotMet: Invoke operator mul error.
Python Callstacks: 
  File "/home/cj1/env-python3/lib/python3.6/site-packages/paddle/fluid/framework.py", line 1654, in append_op
    attrs=kwargs.get("attrs", None))
  File "/home/cj1/env-python3/lib/python3.6/site-packages/paddle/fluid/layer_helper.py", line 43, in append_op
    return self.main_program.current_block().append_op(*args, **kwargs)
  File "/home/cj1/env-python3/lib/python3.6/site-packages/paddle/fluid/layers/nn.py", line 323, in fc
    "y_num_col_dims": 1})
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 43, in loss_net
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 79, in convolutional_neural_network
    return loss_net(conv_pool_2, label)
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 124, in train
    prediction, avg_loss, acc = net_conf(img, label)
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 249, in main
    params_filename=params_filename)
  File "/home/cj1/zz/book/02.recognize_digits/train.py", line 267, in <module>
    main(use_cuda=use_cuda, nn_type=predict)
C++ Callstacks: 
The places of matrices must be same at [/paddle/paddle/fluid/operators/math/blas_impl.h:392]
PaddlePaddle Call Stacks: 
0       0x7f2ff70bed00p void paddle::platform::EnforceNotMet::Init<char const*>(char const*, char const*, int) + 352
1       0x7f2ff70bf079p paddle::platform::EnforceNotMet::EnforceNotMet(std::__exception_ptr::exception_ptr, char const*, int) + 137
2       0x7f2ff77a48f4p void paddle::operators::math::Blas<paddle::platform::CUDADeviceContext>::MatMul<float>(paddle::framework::Tensor const&, bool, paddle::framework::Tensor const&, bool, float, paddle::framework::Tensor*, float) const + 388
3       0x7f2ff77a4ef6p paddle::operators::MulKernel<paddle::platform::CUDADeviceContext, float>::Compute(paddle::framework::ExecutionContext const&) const + 662
4       0x7f2ff77a50e3p std::_Function_handler<void (paddle::framework::ExecutionContext const&), paddle::framework::OpKernelRegistrarFunctor<paddle::platform::CUDAPlace, false, 0ul, paddle::operators::MulKernel<paddle::platform::CUDADeviceContext, float>, paddle::operators::MulKernel<paddle::platform::CUDADeviceContext, double>, paddle::operators::MulKernel<paddle::platform::CUDADeviceContext, paddle::platform::float16> >::operator()(char const*, char const*, int) const::{lambda(paddle::framework::ExecutionContext const&)#1}>::_M_invoke(std::_Any_data const&, paddle::framework::ExecutionContext const&) + 35
5       0x7f2ff8d4e376p paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&, paddle::framework::RuntimeContext*) const + 662
6       0x7f2ff8d4eae4p paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) const + 292
7       0x7f2ff8d4c40cp paddle::framework::OperatorBase::Run(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) + 332
8       0x7f2ff8b5acaap paddle::framework::details::ComputationOpHandle::RunImpl() + 250
9       0x7f2ff8b4dd60p paddle::framework::details::OpHandleBase::Run(bool) + 160
10      0x7f2ff8ab542dp
11      0x7f2ff7e28a73p std::_Function_handler<std::unique_ptr<std::__future_base::_Result_base, std::__future_base::_Result_base::_Deleter> (), std::__future_base::_Task_setter<std::unique_ptr<std::__future_base::_Result<void>, std::__future_base::_Result_base::_Deleter>, void> >::_M_invoke(std::_Any_data const&) + 35
12      0x7f2ff718b567p std::__future_base::_State_base::_M_do_set(std::function<std::unique_ptr<std::__future_base::_Result_base, std::__future_base::_Result_base::_Deleter> ()>&, bool&) + 39
13      0x7f30579da827p
14      0x7f2ff8ab4fc2p
15      0x7f2ff718c8a4p ThreadPool::ThreadPool(unsigned long)::{lambda()#1}::operator()() const + 404
16      0x7f30514799e0p
17      0x7f30579d26dbp
18      0x7f3057d0b88fp clone + 63      0x7fQ»

全部代码:

#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import argparse
from PIL import Image
import numpy
import paddle
import paddle.fluid as fluid


def parse_args():
    parser = argparse.ArgumentParser("mnist")
    parser.add_argument(
        '--enable_ce',
        action='store_true',
        help="If set, run the task with continuous evaluation logs.")
    parser.add_argument(
        '--use_gpu',
        type=bool,
        default=True,
        help="Whether to use GPU or not.")
    parser.add_argument(
        '--num_epochs', type=int, default=5, help="number of epochs.")
    args = parser.parse_args()
    return args


def loss_net(hidden, label):
    prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_loss = fluid.layers.mean(loss)
    acc = fluid.layers.accuracy(input=prediction, label=label)
    return prediction, avg_loss, acc


def multilayer_perceptron(img, label):
    img = fluid.layers.fc(input=img, size=200, act='tanh')
    hidden = fluid.layers.fc(input=img, size=200, act='tanh')
    return loss_net(hidden, label)


def softmax_regression(img, label):
    return loss_net(img, label)


def convolutional_neural_network(img, label):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=img,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
    conv_pool_1.persistable = True

    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu")
    conv_pool_2.persistable = True
    return loss_net(conv_pool_2, label)

def train_data(name):
    if name=='mnist':
        paddle.dataset.mnist.train()
    else:
        print(1)
    return


def train(nn_type,
          use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    startup_program = fluid.default_startup_program()
    main_program = fluid.default_main_program()

    if args.enable_ce:
        train_reader = paddle.batch(
            train_data(), batch_size=BATCH_SIZE)
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
        startup_program.random_seed = 90
        main_program.random_seed = 90
    else:
        train_reader = paddle.batch(
            paddle.reader.shuffle(paddle.dataset.mnist.train(), buf_size=500),
            batch_size=BATCH_SIZE)
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)

    img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    if nn_type == 'softmax_regression':
        net_conf = softmax_regression
    elif nn_type == 'multilayer_perceptron':
        net_conf = multilayer_perceptron
    else:
        net_conf = convolutional_neural_network

    prediction, avg_loss, acc = net_conf(img, label)

    test_program = main_program.clone(for_test=True)
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
    optimizer.minimize(avg_loss)

    def train_test(train_test_program, train_test_feed, train_test_reader):
        acc_set = []
        avg_loss_set = []
        for test_data in train_test_reader():
            acc_np, avg_loss_np = exe.run(
                program=train_test_program,
                feed=train_test_feed.feed(test_data),
                fetch_list=[acc, avg_loss])
            acc_set.append(float(acc_np))
            avg_loss_set.append(float(avg_loss_np))
        # get test acc and loss
        acc_val_mean = numpy.array(acc_set).mean()
        avg_loss_val_mean = numpy.array(avg_loss_set).mean()
        return avg_loss_val_mean, acc_val_mean

    place = fluid.CUDAPlace(1) if use_cuda else fluid.CPUPlace()

    exe = fluid.Executor(place)

    feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
    exe.run(startup_program)
    epochs = [epoch_id for epoch_id in range(PASS_NUM)]

    compiled_prog = fluid.compiler.CompiledProgram(
        fluid.default_main_program()).with_data_parallel(
        loss_name=avg_loss.name)
    lists = []
    step = 0
    for epoch_id in epochs:
        for step_id, data in enumerate(train_reader()):
            metrics = exe.run(
                compiled_prog,
                feed=feeder.feed(data),
                fetch_list=[avg_loss, acc])
            if step % 100 == 0:
                print("Pass %d, Batch %d, Cost %f" % (step, epoch_id,
                                                      metrics[0]))
            step += 1
        # test for epoch
        avg_loss_val, acc_val = train_test(
            train_test_program=test_program,
            train_test_reader=test_reader,
            train_test_feed=feeder)

        print("Test with Epoch %d, avg_cost: %s, acc: %s" %
              (epoch_id, avg_loss_val, acc_val))
        lists.append((epoch_id, avg_loss_val, acc_val))
        if save_dirname is not None:
            fluid.io.save_inference_model(
                save_dirname, ["img"], [prediction],
                exe,
                model_filename=model_filename,
                params_filename=params_filename)

    if args.enable_ce:
        print("kpis\ttrain_cost\t%f" % metrics[0])
        print("kpis\ttest_cost\t%s" % avg_loss_val)
        print("kpis\ttest_acc\t%s" % acc_val)

    # find the best pass
    best = sorted(lists, key=lambda list: float(list[1]))[0]
    print('Best pass is %s, testing Avgcost is %s' % (best[0], best[1]))
    print('The classification accuracy is %.2f%%' % (float(best[2]) * 100))


def infer(use_cuda,
          save_dirname=None,
          model_filename=None,
          params_filename=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    def load_image(file):
        im = Image.open(file).convert('L')
        im = im.resize((28, 28), Image.ANTIALIAS)
        im = numpy.array(im).reshape(1, 1, 28, 28).astype(numpy.float32)
        im = im / 255.0 * 2.0 - 1.0
        return im

    cur_dir = os.path.dirname(os.path.realpath(__file__))
    tensor_img = load_image(cur_dir + '/image/infer_3.png')

    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(
             save_dirname, exe, model_filename, params_filename)

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(
            inference_program,
            feed={feed_target_names[0]: tensor_img},
            fetch_list=fetch_targets)
        lab = numpy.argsort(results)
        print("Inference result of image/infer_3.png is: %d" % lab[0][0][-1])

import time
def main(use_cuda, nn_type):
    model_filename = None
    params_filename = None
    save_dirname = "recognize_digits_" + nn_type + ".inference.model"

    # call train() with is_local argument to run distributed train
    t1=time.time()
    train(
        nn_type=nn_type,
        use_cuda=use_cuda,
        save_dirname=save_dirname,
        model_filename=model_filename,
        params_filename=params_filename)
    # infer(
    #     use_cuda=use_cuda,
    #     save_dirname=save_dirname,
    #     model_filename=model_filename,
    #     params_filename=params_filename)
    t2=time.time()
    print(t2-t1)


if __name__ == '__main__':
    args = parse_args()
    BATCH_SIZE = 64
    PASS_NUM = args.num_epochs
    use_cuda = args.use_gpu
    # predict = 'softmax_regression' # uncomment for Softmax
    # predict = 'multilayer_perceptron' # uncomment for MLP
    predict = 'convolutional_neural_network'  # uncomment for LeNet5
    main(use_cuda=use_cuda, nn_type=predict)
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#18205
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7