Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #18132

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 6月 17, 2019 by saxon_zh@saxon_zhGuest

get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.

Created by: Sherlockxuhy

如果您没有查询到相似问题,为快速解决您的提问,建立issue时请提供如下细节信息:

  • 标题:简洁、精准概括您的问题,例如“Insufficient Memory xxx" ”
  • 版本、环境信息:    1)PaddlePaddle版本:fluid 1.4 /fluid 1.3    2)CPU:MPI集群    4)系统环境:paddleCloud
  • 训练信息:job-0bb5d071a13a2f60

主函数代码如下,参考ctr例子写的分布式ernie的分类fine tune

import os import time import multiprocessing

import paddle.fluid as fluid from multiprocessing import cpu_count

import reader.task_reader as task_reader from model.ernie import ErnieConfig from finetune.classifier import create_model, evaluate from optimization import optimization from utils.args import print_arguments from utils.init import init_pretraining_params, init_checkpoint from finetune_args import parser import numpy as np

def train_loop(args, train_program, train_pyreader, loss, accuracy, graph_vars):

# 
reader = task_reader.ClassifyReader(
    vocab_path=args.vocab_path,
    label_map_config=args.label_map_config,
    max_seq_len=args.max_seq_len,
    do_lower_case=args.do_lower_case,
    in_tokens=args.in_tokens,
    random_seed=args.random_seed)

#exe.run(startup_prog)
train_data_generator = reader.data_generator(
    input_file=args.train_set,
    batch_size=args.batch_size,
    epoch=args.epoch,
    shuffle=True,
    phase="train")
#number of train_data
num_train_examples = reader.get_num_examples(args.train_set)
print("Num train examples: %d" % num_train_examples)

train_pyreader.decorate_tensor_provider(train_data_generator)
print("feed data")

place = fluid.CPUPlace()
exe = fluid.Executor(place)

exec_strategy = fluid.ExecutionStrategy()
build_strategy = fluid.BuildStrategy()

if os.getenv("NUM_THREADS", ""):
    exec_strategy.num_threads = int(os.getenv("NUM_THREADS"))

cpu_num = int(os.environ.get('PADDLE_TRAINER_COUNT', cpu_count()))
build_strategy.reduce_strategy = \
    fluid.BuildStrategy.ReduceStrategy.Reduce if cpu_num > 1 \
        else fluid.BuildStrategy.ReduceStrategy.AllReduce

pe = fluid.ParallelExecutor(
    use_cuda=False,
    loss_name=loss.name,
    main_program=train_program,
    build_strategy=build_strategy,
    exec_strategy=exec_strategy)

#exe.run(fluid.default_startup_program())    

train_pyreader.start()
steps = 0
# if warmup_steps > 0:
#     graph_vars["learning_rate"] = scheduled_lr

time_begin = time.time()
print("time_begin")
while True:
    try:
        steps += 1
        if steps % args.skip_steps != 0:
            loss_val, auc_val = pe.run(fetch_list=[loss.name,accuracy.name])
            loss_val = np.mean(loss_val)
            auc_val = np.mean(auc_val)

        else:
            outputs = evaluate(exe, train_program, train_pyreader,
                            graph_vars, "train")


            current_example, current_epoch = reader.get_train_progress()
            time_end = time.time()
            used_time = time_end - time_begin
            print("epoch: %d, progress: %d/%d, step: %d, ave loss: %f, "
                "ave acc: %f, speed: %f steps/s" %
                (current_epoch, current_example, num_train_examples,
                steps, outputs["loss"], outputs["accuracy"],
                args.skip_steps / used_time))
            time_begin = time.time()
    except fluid.core.EOFException:
        #save_path = os.path.join(args.checkpoints, "step_" + str(steps))
        #fluid.io.save_persistables(exe, save_path, train_program)
        train_pyreader.reset()
        break
####loop end

def train():

args = parser.parse_args()

#ernie config,加载一些超参,建立模型
ernie_config = ErnieConfig(args.ernie_config_path)
ernie_config.print_config()
train_pyreader, graph_vars = create_model(
            args,
            pyreader_name='train_reader',
            ernie_config=ernie_config)
print("========create model")

auc_var = graph_vars["accuracy"]
loss = graph_vars["loss"]
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
print("========adam optimizer")
optimizer.minimize(loss)

port = os.getenv("PADDLE_PORT", "6174")
print("========PADDLE_PORT: " + port)
#pserver_endpoints = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
#print("========PADDLE_PSERVERS_IP_PORT_LIST: " + pserver_endpoints)#难道是这里有问题?,难道是fluid版本?
pserver_ips = os.getenv("PADDLE_PSERVERS", "")
eplist = []
for ip in pserver_ips.split(","):
    eplist.append(':'.join([ip, port]))
args.endpoints = ",".join(eplist)
args.trainers = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
#trainers = int(os.getenv("PADDLE_TRAINERS_NUM"))
args.current_endpoint = os.getenv("POD_IP", "localhost") + ":" + port
#current_endpoint = os.getenv("POD_IP") + ":" + port
args.role = os.getenv("TRAINING_ROLE", "TRAINER")
args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
#trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
#training_role = os.getenv("TRAINING_ROLE")

t = fluid.DistributeTranspiler()
t.transpile(args.trainer_id, pservers=args.endpoints, trainers=args.trainers)
print("=========t.transpile")

if args.role == "PSERVER" or args.role == "pserver":
    pserver_prog = t.get_pserver_program(args.current_endpoint)
    pserver_startup = t.get_startup_program(args.current_endpoint,
                                            pserver_program=pserver_prog)

    exe = fluid.Executor(fluid.CPUPlace())
    exe.run(pserver_startup)
    print("pserver_startup")

    init_pretraining_params(
        exe,
        args.init_pretraining_params,
        main_program=pserver_prog,
        use_fp16=args.use_fp16)
    print("loaded pretrain model")

    exe.run(pserver_prog)

elif args.role == "TRAINER" or args.role == "trainer":
    train_prog = t.get_trainer_program()
    train_loop(args, train_prog, train_pyreader, loss, auc_var, graph_vars)

if name == 'main': train()

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#18132
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7