Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #17988

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 6月 11, 2019 by saxon_zh@saxon_zhGuest

【1.5】save_inference_model 接口,在feeded_var_names时候传入被裁剪的var,会报错

Created by: ccmeteorljh

paddle version:1.5 train.py

#!/usr/bin/python
# -*- coding: UTF-8 -*-
# Configure the neural network.

import paddle
import paddle.fluid as fluid
import numpy
import os
from paddle.fluid.incubate.fleet.parameter_server.distributed_transpiler import fleet
from paddle.fluid.incubate.fleet.base import role_maker
from paddle.fluid.transpiler.distribute_transpiler import DistributeTranspilerConfig


def net(x, y):
    fc_0 = fluid.layers.fc(input=x, size=1, act='tanh')
    fc_1 = fluid.layers.fc(input=x, size=1, act='tanh')
    fc_2 = fluid.layers.fc(input=[fc_0, fc_1], size=1, act='tanh')
    y_predict = fluid.layers.fc(input=fc_0, size=2, act="softmax")
    cost = fluid.layers.cross_entropy(input=y_predict, label=y)
    avg_cost = fluid.layers.mean(cost)
    auc_var, auc_batch_var, auc_states = fluid.layers.auc(input=y_predict, label=y, slide_steps=20)
    return y_predict, avg_cost, auc_var, auc_batch_var

def fake_reader():
    def reader():
        for i in range(1000):
            x = numpy.random.random((1, 13)).astype('float32')
            y = numpy.random.randint(0, 2, (1, 1)).astype('int64')
            yield x,y
    return reader

def train():
    x = fluid.layers.data(name='x', shape=[13], dtype='float32')
    y = fluid.layers.data(name='y', shape=[1], dtype='int64')
    y_predict, avg_cost, auc, auc_batch = net(x, y)
 
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
 
    trainer_id = int(os.environ["PADDLE_TRAINER_ID"])
    trainers = int(os.environ["PADDLE_TRAINERS"])
    training_role = os.environ["PADDLE_TRAINING_ROLE"]
    training_role = role_maker.Role.WORKER if training_role == "TRAINER" else role_maker.Role.SERVER
    print(type(training_role)) 
    ports = os.getenv("PADDLE_PSERVER_PORTS")
    pserver_ip = os.getenv("PADDLE_PSERVER_IP", "")
    pserver_endpoints = []
    for port in ports.split(","):
        pserver_endpoints.append(':'.join([pserver_ip, port]))
 
    role = role_maker.UserDefinedRoleMaker(current_id=trainer_id, role=training_role, worker_num=trainers, server_endpoints=pserver_endpoints)
    config = DistributeTranspilerConfig()
    config.sync_mode = True
 
    # 加入 fleet init 初始化环境
    fleet.init(role)
    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
    # 加入 fleet distributed_optimizer 加入分布式策略配置及多机优化
    optimizer = fleet.distributed_optimizer(optimizer, config)
    optimizer.minimize(avg_cost)
 
    # 启动server
    if fleet.is_server():
        fleet.init_server()
        fleet.run_server()
 
    # 启动worker
    if fleet.is_worker():
        # 初始化worker配置
        fleet.init_worker()
 
        feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
        train_reader = paddle.batch(fake_reader(), batch_size=24)
 
        exe.run(fleet.startup_program)
 
        print fleet.main_program
        PASS_NUM = 10
        for pass_id in range(PASS_NUM):
            for batch_id, data in enumerate(train_reader()):
                avg_loss_value, auc_value, auc_batch_value = exe.run(fleet.main_program, feed=feeder.feed(data), fetch_list=[avg_cost, auc, auc_batch])
                print("Pass %d, total avg cost = %f, auc = %f, batch_auc = %f" % (pass_id, avg_loss_value, auc_value, auc_batch_value))
        
        #fleet.save_inference_model(exe, "./inference_model", feeded_var_names=[x.name], target_vars=[y], main_program=fleet.main_program, export_for_deployment=True)
        fleet.save_inference_model(exe, "./inference_model", feeded_var_names=[x.name, y.name], target_vars=[y_predict], export_for_deployment=True)
        fleet.save_persistables(exe, "./persistables", main_program=None)
        # 通知server,当前节点训练结束
        fleet.stop_worker()

if __name__ == "__main__":
    train()

train.sh

#!/bin/bash
 
export PADDLE_TRAINERS=1
export PADDLE_TRAINER_ID=0
export PADDLE_PSERVER_PORTS=36001
export PADDLE_PSERVER_IP=127.0.0.1
 
if [ "$1" = "ps" ]
then
    export PADDLE_TRAINING_ROLE=PSERVER
 
    export GLOG_v=0
    export GLOG_logtostderr=1
 
    echo "PADDLE WILL START PSERVER ..."
    stdbuf -oL python train.py &> pserver.0.log &
fi
 
if [ "$1" = "tr" ]
then
    export PADDLE_TRAINING_ROLE=TRAINER
 
    export GLOG_v=0
    export GLOG_logtostderr=1
 
    echo "PADDLE WILL START TRAINER ..."
    stdbuf -oL python train.py &> trainer.0.log &
fi

执行命令:

bash train.sh ps
bash train.sh tr

报错如下:

Pass 9, total avg cost = 0.667034, auc = 0.494549, batch_auc = 0.485349
Pass 9, total avg cost = 0.723714, auc = 0.494146, batch_auc = 0.471183
Pass 9, total avg cost = 0.715571, auc = 0.493919, batch_auc = 0.464442
Pass 9, total avg cost = 0.697153, auc = 0.493904, batch_auc = 0.460331
Pass 9, total avg cost = 0.675562, auc = 0.494208, batch_auc = 0.462572
Pass 9, total avg cost = 0.703915, auc = 0.494083, batch_auc = 0.459323
Pass 9, total avg cost = 0.701939, auc = 0.494001, batch_auc = 0.459589
Pass 9, total avg cost = 0.683494, auc = 0.494195, batch_auc = 0.476225
Pass 9, total avg cost = 0.689812, auc = 0.494278, batch_auc = 0.479758
Pass 9, total avg cost = 0.698757, auc = 0.494270, batch_auc = 0.483297
Pass 9, total avg cost = 0.699067, auc = 0.494255, batch_auc = 0.485961
Pass 9, total avg cost = 0.689187, auc = 0.494375, batch_auc = 0.484674
Pass 9, total avg cost = 0.687636, auc = 0.494524, batch_auc = 0.491892
Pass 9, total avg cost = 0.700927, auc = 0.494461, batch_auc = 0.490608
Pass 9, total avg cost = 0.681764, auc = 0.494693, batch_auc = 0.496995
Pass 9, total avg cost = 0.695704, auc = 0.494697, batch_auc = 0.503726
Pass 9, total avg cost = 0.692039, auc = 0.494755, batch_auc = 0.508039
Pass 9, total avg cost = 0.683566, auc = 0.494957, batch_auc = 0.513368
Pass 9, total avg cost = 0.706128, auc = 0.494837, batch_auc = 0.509732
Pass 9, total avg cost = 0.697720, auc = 0.494861, batch_auc = 0.513518
Pass 9, total avg cost = 0.685556, auc = 0.495013, batch_auc = 0.505540
Pass 9, total avg cost = 0.690064, auc = 0.495078, batch_auc = 0.517566
Traceback (most recent call last):
  File "train.py", line 91, in <module>
    train()
  File "train.py", line 85, in train
    fleet.save_inference_model(exe, "./inference_model", feeded_var_names=[x.name, y.name], target_vars=[y_predict], export_for_deployment=True)
  File "/usr/local/lib/python2.7/dist-packages/paddle/fluid/incubate/fleet/parameter_server/distributed_transpiler/__init__.py", line 157, in save_inference_model
    model_only=True)
  File "/usr/local/lib/python2.7/dist-packages/paddle/fluid/io.py", line 1064, in save_inference_model
    prepend_feed_ops(main_program, feeded_var_names)
  File "/usr/local/lib/python2.7/dist-packages/paddle/fluid/io.py", line 878, in prepend_feed_ops
    out = global_block.var(name)
  File "/usr/local/lib/python2.7/dist-packages/paddle/fluid/framework.py", line 1497, in var
    raise ValueError("var %s not in this block" % name)
ValueError: var y not in this block
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#17988
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7