Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #17370

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 5月 13, 2019 by saxon_zh@saxon_zhGuest

save_inference_model()保存的时候总显示ValueError: var 张量名称 not in this block,save_inference_model()里的feeded_var_names参数,list长度为一的时候就没问题,长度为2就报这个错

Created by: LittleDreamDog

# -*- coding: utf-8 -*-
import paddle
import paddle.fluid as fluid
import json
import codecs
import numpy
import link_model
import time
import os
import sys

reload(sys)
sys.setdefaultencoding("utf-8")

id2char, char2id = json.load(open('data_path/all_chars_me.json'))
print("Finish loaded char_dict!")


def get_train_data(filename):
    def reader():
        with codecs.open(filename, encoding="utf-8") as f:
            for l in f:
                _ = json.loads(l)
                text = _['text']
                kb_dict = _['kb_dict']
                label = _['label']
                new_slot = text + kb_dict
                text_slot = [char2id.get(c, 1) for c in new_slot]
                # kb_dict_slot = [char2id.get(c, 1) for c in kb_dict]
                target_slot = numpy.zeros(2)
                target_slot[int(label)] = 1
                sample_result = [text_slot, target_slot]
                if sample_result is None:
                    continue
                yield tuple(sample_result)

    print("Finish loaded train_data!")
    return reader


def del_file(path):
    ls = os.listdir(path)
    for i in ls:
        c_path = os.path.join(path, i)
        if os.path.isdir(c_path):
            del_file(c_path)
        else:
            os.remove(c_path)


char_len = len(char2id)
embedding_size = 64
batch_size = 128


def train():
    # train_data = get_train_data("data_path/all_train_deal.json")
    train_data = get_train_data("data_path/link_train_data.json")
    dev_data = get_train_data("data_path/link_dev_data.json")
    text = fluid.layers.data(name="text", shape=[1], dtype='int64', lod_level=1)
    desc = fluid.layers.data(name="desc", shape=[1], dtype='int64', lod_level=1)
    target = fluid.layers.data(
        name='target', shape=[2], dtype='float32', lod_level=0)

    feature_out = link_model.bilstm(text=text,desc=desc, embdding_size=embedding_size, char_len=char_len)

    entropy_cost = fluid.layers.cross_entropy(input=feature_out, label=target, soft_label=True)
    avg_cost = fluid.layers.mean(entropy_cost)

    # valid program
    valid_program = fluid.default_main_program().clone(for_test=True)

    optimizer = fluid.optimizer.AdamOptimizer(learning_rate=0.001)
    optimizer.minimize(avg_cost)

    train_batch_reader = paddle.batch(
        reader=paddle.reader.shuffle(train_data, buf_size=6144),
        batch_size=batch_size
    )

    valid_batch_reader = paddle.batch(
        reader=paddle.reader.shuffle(dev_data, buf_size=2048), batch_size=batch_size
    )

    # place = fluid.CPUPlace()
    place = fluid.CUDAPlace(0)

    feeder = fluid.DataFeeder(feed_list=[text,desc, target], place=place)
    exe = fluid.Executor(place)

    save_dirname = './output/link_model'

    exe.run(fluid.default_startup_program())
    start_time = time.time()
    batch_id = 0
    best_precision = 0.0
    for pass_id in range(200):
        pass_start_time = time.time()
        cost_sum, cost_counter = 0, 0
        for data in train_batch_reader():
            # print(data[1][1])
            cost = exe.run(program=fluid.default_main_program(), feed=feeder.feed(data),
                           fetch_list=[avg_cost])
            # ss= numpy.array(feature_outs)
            # sss= numpy.array(kb_dict_slot)
            # print("feature_outs::::::")
            # print(ss.shape)
            # print(ss[1])
            # print("targets::::::")
            # print(sss.shape)
            # print(sss[1])
            # print("======================")
            # cost = numpy.array(cost)
            cost = cost[0]
            cost_sum += cost
            cost_counter += 1
            if batch_id % 40 == 0 and batch_id != 0:
                print >> sys.stderr, "batch %d finished, second per batch: %02f, avg_cost: %f" % (
                    batch_id, (time.time() - start_time) / batch_id, cost)

            if batch_id % 200 == 0 and batch_id != 0:
                all_target_count_0 = 0.0
                all_target_count_1 = 0.0
                all_correct_count_0 = 0.0
                all_correct_count_1 = 0.0
                for valid_data in valid_batch_reader():
                    targets, feature_outs = exe.run(program=valid_program, feed=feeder.feed(valid_data),
                                                    fetch_list=[target, feature_out],
                                                    return_numpy=False)

                    label_tag_scores = numpy.array(feature_outs)
                    target_label_tag_scores = numpy.array(targets)
                    for r in range(len(target_label_tag_scores)):
                        tag_pre = label_tag_scores[r].argmax()
                        tag_target = target_label_tag_scores[r].argmax()
                        if tag_target == 1:
                            all_target_count_1 += 1
                            if tag_target == tag_pre:
                                all_correct_count_1 += 1
                        else:
                            all_target_count_0 += 1
                            if tag_target == tag_pre:
                                all_correct_count_0 += 1

                precision_1 = all_correct_count_1 / all_target_count_1
                precision_0 = all_correct_count_0 / all_target_count_0
                print(all_correct_count_1)
                print(all_correct_count_0)
                print(all_target_count_1)
                print(all_target_count_0)
                print('======================')

                if precision_1 > best_precision:
                    save_path = os.path.join(save_dirname, 'best')
                    if os.path.exists(save_path) == False:
                        os.makedirs(save_path)
                    del_file(save_path)
                    with open(save_path + "/best_precision.txt", "w") as f:
                        f.write("precision_1:" + str(precision_1) + "\tprecision_0:" + str(precision_0))
                    fluid.io.save_inference_model(save_path, ['text','desc'],
                                                  [feature_out], exe, main_program=valid_program,
                                                  params_filename='params')
                    best_precision = precision_1
                print >> sys.stderr, "Valid end, precision_1: %f,\tprecision_0: %f" % (precision_1, precision_0)

            batch_id = batch_id + 1
        pass_avg_cost = cost_sum / cost_counter if cost_counter > 0 else 0.0
        print >> sys.stderr, "%d pass end, cost time: %02f, avg_cost: %f" % (
            pass_id, time.time() - pass_start_time, pass_avg_cost)

    else:
        # pass times complete and the training is over
        save_path = os.path.join(save_dirname, 'final')
        fluid.io.save_inference_model(save_path, ['text','desc'],
                                      [feature_out], exe, params_filename='params')
    return


train()

image

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#17370
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7