Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #16553

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 3月 29, 2019 by saxon_zh@saxon_zhGuest

训练时sum op上报错Expected in_dim == x_dim, but received in_dim:10, 512 != x_dim:548, 512

Created by: hwhwhwaaaa

在实现attention网络时报错,代码如下:

def get_p_attention(p_emb_layer, lstm_layer, hidden_dim):
    p_fc = fluid.layers.fc(input=p_emb_layer, size=hidden_dim, act='tanh')
    plstm_0, _ = fluid.layers.dynamic_lstm(input=p_fc, \
        size=hidden_dim,
        candidate_activation='relu',
        gate_activation='sigmoid',
        cell_activation='sigmoid',
        is_reverse=True)
    p_lstm_layer = fluid.layers.sequence_last_step(input=plstm_0)
    p_expand = fluid.layers.sequence_expand(x=p_lstm_layer, y=lstm_layer)
    combined_input = fluid.layers.elementwise_mul(x=lstm_layer,
                                        y=p_expand)
    attention_weight = fluid.layers.fc(input=combined_input,
                                        size=1,
                                        act='tanh',
                                        bias_attr=False)
    #得到归一化权重
    normed_attention_weight = fluid.layers.sequence_softmax(input=attention_weight)
    assist_info = {'unnormalized_p_attention_weight': attention_weight}
    return normed_attention_weight, assist_info

def att_model():
    word_emb_fixed = True if conf_dict['word_emb_fixed'] == "True" else False
    emb_distributed = not conf_dict['is_local']
    conf_dict['is_sparse'] = bool(conf_dict['is_sparse'])
    char_param = fluid.ParamAttr(name=conf_dict['emb_name'],
                                 trainable=(not char_emb_fixed))
    
    char_embedding = fluid.layers.embedding(
        input=char,
        size=[data_reader.get_dict_size('charemb_dict'),
            conf_dict['char_dim']],
        dtype='float32',
        is_distributed=emb_distributed,
        is_sparse=emb_distributed,
        param_attr=char_param)

    p_embedding = fluid.layers.embedding(
        input=p_word,
        size=[data_reader.get_dict_size('charemb_dict'),
            conf_dict['char_dim']],
        dtype='float32',
        is_distributed=emb_distributed,
        is_sparse=emb_distributed,
        param_attr=char_param)

    emb_layers = [char_embedding, p_embedding]
    # input hidden
    char_fc = fluid.layers.fc(input=char_embedding, size=hidden_dim, act='tanh')
    lstm_layer, _ = fluid.layers.dynamic_lstm(
        input=char_fc,
        size=hidden_dim,
        candidate_activation='relu',
        gate_activation='sigmoid',
        cell_activation='sigmoid',
        is_reverse=0)
    position_weight_layer, position_attention_assist_info = \
        get_p_attention(p_embedding, lstm_layer, hidden_dim)
    p_scaled_lstm_layer = fluid.layers.elementwise_mul(x=lstm_layer,
                                    y=position_weight_layer)
    p_lstm_layer = fluid.layers.sequence_pool(input=p_scaled_lstm_layer,
                                            pool_type='sum')
  
    lstm_layers = [p_lstm_layer, lstm_layer]
    hidden_0_layers = [
        fluid.layers.fc(input=l_layer, size=hidden_dim, act='tanh')
            for l_layer in lstm_layers
        ]
    hidden_0 = fluid.layers.sums(input=hidden_0_layers)
    lstm_0 = fluid.layers.dynamic_lstm(
        input=hidden_0/4,
        size=hidden_dim,
        candidate_activation='relu',
        gate_activation='sigmoid',
        cell_activation='sigmoid')

    # stack L-LSTM and R-LSTM with direct edges
    input_tmp = [hidden_0, lstm_0]

    for i in range(1, depth):
        mix_hidden = fluid.layers.sums(input=[
            fluid.layers.fc(input=input_tmp[0], size=hidden_dim, act='tanh'),
            fluid.layers.fc(input=input_tmp[1], size=hidden_dim, act='tanh')
        ])

        lstm = fluid.layers.dynamic_lstm(
            input=mix_hidden,
            size=hidden_dim,
            candidate_activation='relu',
            gate_activation='sigmoid',
            cell_activation='sigmoid',
            is_reverse=((i % 2) == 1))

        input_tmp = [mix_hidden, lstm]

    # output
    feature_out = fluid.layers.sums(input=[
        fluid.layers.fc(input=input_tmp[0], size=label_dict_len, act='tanh'),
        fluid.layers.fc(input=input_tmp[1], size=label_dict_len, act='tanh')
    ])

    return feature_out
`

错误信息:
`
   cost = exe.run(main_program, feed=feeder.feed(data), fetch_list=[avg_cost])
  File "./tools/paddle_fluid/paddle_release_home/python/lib/python2.7/site-packages/paddle/fluid/executor.py", line 472, in run
    self.executor.run(program.desc, scope, 0, True, True)
paddle.fluid.core.EnforceNotMet: Enforce failed. Expected in_dim == x_dim, but received in_dim:10, 512 != x_dim:548, 512.
Input tensors must have same shape at [/paddle/paddle/fluid/operators/sum_op.cc:59]
PaddlePaddle Call Stacks:
0       0x7f78eff19ed2p paddle::platform::EnforceNotMet::EnforceNotMet(std::__exception_ptr::exception_ptr, char const*, int) + 482
1       0x7f78f044c7a5p paddle::operators::SumOp::InferShape(paddle::framework::InferShapeContext*) const + 1237
2
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#16553
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7