在k8s集群中通过service暴露端口,创建分布式任务失败
Created by: liuliu4348
- 版本、环境信息: 1)PaddlePaddle版本:0.14 2)CPU:Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz 4)系统环境:k8s(v1.10.7),镜像信息(hub.baidubce.com/paddlepaddle/paddle: 0.14.0)
- 训练信息 1)多记多卡 2)Operator信息
- 复现信息:在k8s中先启动4个service,暴露端口6174,然后再启动与之对应的4个pod,其中两个为PSERVER,两个为TRAINER,通过service的clusterIP和端口可以访问相应的pod提供的服务。 在pod中写入相应的环境变量,以第一个PSERVER的pod为例: PADDLE_TRAINING_ROLE=PSERVER PADDLE_PSERVER_IPS=10.104.213.246,10.97.10.70 PADDLE_PSERVER_PORT=6174 PADDLE_TRAINERS=2 PADDLE_CURRENT_IP=10.104.213.246
代码为官网demo示例: import os import sys, getopt import paddle import paddle.fluid as fluid
from visualdl import LogWriter
EPOCH_NUM = 30 BATCH_SIZE = 8
train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.uci_housing.train(), buf_size=500), batch_size=BATCH_SIZE)
def train(save_dir, log_dir): y = fluid.layers.data(name='y', shape=[1], dtype='float32') x = fluid.layers.data(name='x', shape=[13], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None)
logwriter = LogWriter(log_dir, sync_cycle=10)
with logwriter.mode("train") as writer:
loss_scalar = writer.scalar("loss")
loss = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(loss)
opt = fluid.optimizer.SGD(learning_rate=0.001)
opt.minimize(avg_loss)
# use cpu
place = fluid.CPUPlace()
#use gpu
#place = fluid.CUDAPlace(0)
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
# fetch distributed training environment setting
training_role = os.getenv("PADDLE_TRAINING_ROLE", None)
port = os.getenv("PADDLE_PSERVER_PORT", "6174")
pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
eplist = []
for ip in pserver_ips.split(","):
eplist.append(':'.join([ip, port]))
pserver_endpoints = ",".join(eplist)
trainers = int(os.getenv("PADDLE_TRAINERS"))
current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
t = fluid.DistributeTranspiler()
t.transpile(
trainer_id = trainer_id,
pservers = pserver_endpoints,
trainers = trainers)
if training_role == "PSERVER":
pserver_prog = t.get_pserver_program(current_endpoint)
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
exe.run(startup_prog)
exe.run(pserver_prog)
elif training_role == "TRAINER":
trainer_prog = t.get_trainer_program()
exe.run(fluid.default_startup_program())
for epoch in range(EPOCH_NUM):
for batch_id, batch_data in enumerate(train_reader()):
avg_loss_value, = exe.run(trainer_prog,
feed=feeder.feed(batch_data),
fetch_list=[avg_loss])
loss_scalar.add_record(batch_id + epoch * 50, avg_loss_value[0])
if (batch_id + 1) % 10 == 0:
print("Epoch: {0}, Batch: {1}, loss: {2}".format(
epoch, batch_id, avg_loss_value[0]))
# destory the resource of current trainer node in pserver server node
if trainer_id == 0:
fluid.io.save_params(executor=exe, dirname=save_dir,
main_program=trainer_prog)
exe.close()
else:
raise AssertionError("PADDLE_TRAINING_ROLE should be one of [TRAINER, PSERVER]")
opts, args = getopt.getopt(sys.argv[1:], "hs:l:", ["save_dir=", "log_dir="])
save_dir="./output"
log_dir="./log"
for op, value in opts:
if op == "-h":
print 'test.py -s <save_dir>'
sys.exit()
elif op in ("-s", "--save_dir"):
save_dir=value
elif op in ("-l", "--log_dir"):
log_dir=value
train(save_dir, log_dir)
- 问题描述:运行第一个PSERVER时报错: block map: {'fc_0.b_0': [(0L, 1L)], 'fc_0.w_0': [(0L, 13L)]} block map: {'fc_0.w_0@GRAD': [(0L, 13L)], 'fc_0.b_0@GRAD': [(0L, 1L)]} E0315 02:21:11.156191433 77 server_chttp2.cc:38] {"created":"@1552616471.156142167","description":"No address added out of total 1 resolved","file":"src/core/ext/transport/chttp2/server/chttp2_server.cc","file_line":305,"referenced_errors":[{"created":"@1552616471.156129936","description":"Unable to configure socket","fd":10,"file":"src/core/lib/iomgr/tcp_server_utils_posix_common.cc","file_line":202,"referenced_errors":[{"created":"@1552616471.156123980","description":"OS Error","errno":99,"file":"src/core/lib/iomgr/tcp_server_utils_posix_common.cc","file_line":175,"os_error":"Cannot assign requested address","syscall":"bind"}]}]} *** Aborted at 1552616471 (unix time) try "date -d @1552616471" if you are using GNU date *** PC: @ 0x0 (unknown) *** SIGSEGV (@0x50) received by PID 25 (TID 0x7fb41cb84700) from PID 80; stack trace: *** @ 0x7fb5816ca390 (unknown) @ 0x7fb53259bf2e grpc::ServerInterface::RegisteredAsyncRequest::IssueRequest() @ 0x7fb53255060f paddle::operators::distributed::AsyncGRPCServer::TryToRegisterNewOne() @ 0x7fb532550f4e paddle::operators::distributed::AsyncGRPCServer::StartServer() @ 0x7fb53247c364 paddle::operators::RunServer() @ 0x7fb532481587 std::thread::_Impl<>::_M_run() @ 0x7fb54053fc80 (unknown) @ 0x7fb5816c06ba start_thread @ 0x7fb5813f641d clone @ 0x0 (unknown) Segmentation fault (core dumped) 另外:通过paddle_trainer 的方式在k8s上用此方式启动分布式任务是可以成功的。