Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #158

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 10月 04, 2016 by saxon_zh@saxon_zhGuest

"cudaSuccess == err (0 vs. 8)" error on v0.8.0b1

Created by: alvations

I have installed paddlepaddle using the .deb file from https://github.com/baidu/Paddle/releases/download/V0.8.0b1/paddle-gpu-0.8.0b1-Linux.deb

I have a GTX 1080 with CUDA 8.0 installed with cudnn v5.1 without the NVIDIA Accelerated Graphics Driver

$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2016 NVIDIA Corporation
Built on Sun_Sep__4_22:14:01_CDT_2016
Cuda compilation tools, release 8.0, V8.0.44

I've set the shell variables:

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda

And when I tried to run the demo from the Paddle github repo, I am getting a [hl_gpu_apply_unary_op failed] CUDA error: invalid device function error. Is there some way to resolve this? #3 (closed), #18 (closed), #95 (closed) seems to occur even though the cmake file on the latest release should have been fixed #107 , i'm getting this error:

~/Paddle/demo/image_classification$ bash train.sh 
I1005 13:07:51.456790   894 Util.cpp:151] commandline: /home/ltan/Paddle/binary/bin/../opt/paddle/bin/paddle_trainer --config=vgg_16_cifar.py --dot_period=10 --log_period=100 --test_all_data_in_one_period=1 --use_gpu=1 --trainer_count=1 --num_passes=200 --save_dir=./cifar_vgg_model 
I1005 13:07:55.145606   894 Util.cpp:126] Calling runInitFunctions
I1005 13:07:55.145925   894 Util.cpp:139] Call runInitFunctions done.
[INFO 2016-10-05 13:07:55,313 layers.py:1620] channels=3 size=3072
[INFO 2016-10-05 13:07:55,313 layers.py:1620] output size for __conv_0__ is 32 
[INFO 2016-10-05 13:07:55,315 layers.py:1620] channels=64 size=65536
[INFO 2016-10-05 13:07:55,315 layers.py:1620] output size for __conv_1__ is 32 
[INFO 2016-10-05 13:07:55,316 layers.py:1681] output size for __pool_0__ is 16*16 
[INFO 2016-10-05 13:07:55,317 layers.py:1620] channels=64 size=16384
[INFO 2016-10-05 13:07:55,317 layers.py:1620] output size for __conv_2__ is 16 
[INFO 2016-10-05 13:07:55,319 layers.py:1620] channels=128 size=32768
[INFO 2016-10-05 13:07:55,319 layers.py:1620] output size for __conv_3__ is 16 
[INFO 2016-10-05 13:07:55,320 layers.py:1681] output size for __pool_1__ is 8*8 
[INFO 2016-10-05 13:07:55,321 layers.py:1620] channels=128 size=8192
[INFO 2016-10-05 13:07:55,321 layers.py:1620] output size for __conv_4__ is 8 
[INFO 2016-10-05 13:07:55,323 layers.py:1620] channels=256 size=16384
[INFO 2016-10-05 13:07:55,323 layers.py:1620] output size for __conv_5__ is 8 
[INFO 2016-10-05 13:07:55,324 layers.py:1620] channels=256 size=16384
[INFO 2016-10-05 13:07:55,325 layers.py:1620] output size for __conv_6__ is 8 
[INFO 2016-10-05 13:07:55,326 layers.py:1681] output size for __pool_2__ is 4*4 
[INFO 2016-10-05 13:07:55,327 layers.py:1620] channels=256 size=4096
[INFO 2016-10-05 13:07:55,327 layers.py:1620] output size for __conv_7__ is 4 
[INFO 2016-10-05 13:07:55,328 layers.py:1620] channels=512 size=8192
[INFO 2016-10-05 13:07:55,329 layers.py:1620] output size for __conv_8__ is 4 
[INFO 2016-10-05 13:07:55,330 layers.py:1620] channels=512 size=8192
[INFO 2016-10-05 13:07:55,330 layers.py:1620] output size for __conv_9__ is 4 
[INFO 2016-10-05 13:07:55,332 layers.py:1681] output size for __pool_3__ is 2*2 
[INFO 2016-10-05 13:07:55,332 layers.py:1681] output size for __pool_4__ is 1*1 
[INFO 2016-10-05 13:07:55,335 networks.py:1125] The input order is [image, label]
[INFO 2016-10-05 13:07:55,335 networks.py:1132] The output order is [__cost_0__]
I1005 13:07:55.342417   894 Trainer.cpp:170] trainer mode: Normal
F1005 13:07:55.343267   894 hl_gpu_matrix_kernel.cuh:181] Check failed: cudaSuccess == err (0 vs. 8) [hl_gpu_apply_unary_op failed] CUDA error: invalid device function
*** Check failure stack trace: ***
    @     0x7f1c681cadaa  (unknown)
    @     0x7f1c681cace4  (unknown)
    @     0x7f1c681ca6e6  (unknown)
    @     0x7f1c681cd687  (unknown)
    @           0x78a939  hl_gpu_apply_unary_op<>()
    @           0x7536bf  paddle::BaseMatrixT<>::applyUnary<>()
    @           0x7532a9  paddle::BaseMatrixT<>::applyUnary<>()
    @           0x73d82f  paddle::BaseMatrixT<>::zero()
    @           0x66d2ae  paddle::Parameter::enableType()
    @           0x669acc  paddle::parameterInitNN()
    @           0x66bd13  paddle::NeuralNetwork::init()
    @           0x679ed3  paddle::GradientMachine::create()
    @           0x6a6355  paddle::TrainerInternal::init()
    @           0x6a2697  paddle::Trainer::init()
    @           0x53a1f5  main
    @     0x7f1c673d6f45  (unknown)
    @           0x545ae5  (unknown)
    @              (nil)  (unknown)
/home/ltan/Paddle/binary/bin/paddle: line 81:   894 Aborted                 (core dumped) ${DEBUGGER} $MYDIR/../opt/paddle/bin/paddle_trainer ${@:2}
No data to plot. Exiting!

I have also tried recompiling from source and the same error occurs. BTW, the quick_start demo works though.

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#158
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7