Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #15346

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 1月 16, 2019 by saxon_zh@saxon_zhGuest

强化学习的一些问题?

Created by: yeyupiaoling

环境

  • PaddlePaddle 1.2.0
  • Python 3.5
  • Windows 10

问题

我仿照Tensorflow写了一个PaddlePaddle的强化学习例子,并充分参考了PaddlePaddle官方提供的models下的强化学习例子,但是我复现的PaddlePaddle强化学习例子性能远不及Tensorflow的,老师们能帮我看一下吗? PaddlePaddle代码:

import numpy as np
import paddle.fluid as fluid
import random
import gym
from collections import deque


# 定义一个深度神经网络
def QNetWork(ipt):
    fc1 = fluid.layers.fc(input=ipt, size=24, act='relu')
    fc2 = fluid.layers.fc(input=fc1, size=24, act='relu')
    out = fluid.layers.fc(input=fc2, size=2)
    return out


# 定义输入数据
state_data = fluid.layers.data(name='state', shape=[4], dtype='float32')
action_data = fluid.layers.data(name='action', shape=[1], dtype='int64')
reward_data = fluid.layers.data(name='reward', shape=[], dtype='float32')
next_state_data = fluid.layers.data(name='next_state', shape=[4], dtype='float32')
done_data = fluid.layers.data(name='done', shape=[], dtype='float32')

# 定义训练的参数
batch_size = 32
num_episodes = 1000
num_exploration_episodes = 100
max_len_episode = 1000
learning_rate = 1e-3
gamma = 1.0
initial_epsilon = 1.0
final_epsilon = 0.01

# 实例化一个游戏环境,参数为游戏名称
env = gym.make("CartPole-v1")
replay_buffer = deque(maxlen=10000)

# 获取网络
state_model = QNetWork(state_data)

# 克隆预测程序
predict_program = fluid.default_main_program().clone()

action_onehot = fluid.layers.one_hot(action_data, 2)
pred_action_value = fluid.layers.reduce_sum(fluid.layers.elementwise_mul(action_onehot, state_model), dim=1)

targetQ_predict_value = QNetWork(next_state_data)
best_v = fluid.layers.reduce_max(targetQ_predict_value, dim=1)
best_v.stop_gradient = True
target = reward_data + gamma * best_v * (1.0 - done_data)

# 定义损失函数
cost = fluid.layers.square_error_cost(pred_action_value, target)
avg_cost = fluid.layers.reduce_mean(cost)

# 定义优化方法
optimizer = fluid.optimizer.AdamOptimizer(learning_rate=learning_rate, epsilon=1e-3)
opt = optimizer.minimize(avg_cost)

# 创建执行器并进行初始化
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
epsilon = initial_epsilon
# 开始玩游戏
for epsilon_id in range(num_episodes):
    # 初始化环境,获得初始状态
    state = env.reset()
    epsilon = max(initial_epsilon * (num_exploration_episodes - epsilon_id) /
                  num_exploration_episodes, final_epsilon)
    for t in range(max_len_episode):
        # 显示游戏界面
        # env.render()
        # epsilon-greedy 探索策略
        state = np.expand_dims(state, axis=0)
        if random.random() < epsilon:
            # 以 epsilon 的概率选择随机下一步动作
            action = env.action_space.sample()
        else:
            # 使用模型预测作为结果下一步动作
            action = exe.run(predict_program,
                             feed={'state': state.astype('float32')},
                             fetch_list=[state_model])[0]
            action = np.squeeze(action, axis=0)
            action = np.argmax(action)

        # 让游戏执行动作,获得执行完 动作的下一个状态,动作的奖励,游戏是否已结束以及额外信息
        next_state, reward, done, info = env.step(action)

        # 如果游戏结束,就进行惩罚
        reward = -10 if done else reward
        # 记录游戏输出的结果,作为之后训练的数据
        replay_buffer.append((state, action, reward, next_state, done))
        state = next_state

        # 如果游戏结束,就重新玩游戏
        if done:
            print('Pass:%d, epsilon:%f, score:%d' % (epsilon_id, epsilon, t))
            break

        # 如果收集的数据大于Batch的大小,就开始训练
        if len(replay_buffer) >= batch_size:
            batch_state, batch_action, batch_reward, batch_next_state, batch_done = \
                [np.array(a, np.float32) for a in zip(*random.sample(replay_buffer, batch_size))]

            # 调整数据维度
            batch_action = np.expand_dims(batch_action, axis=-1)
            batch_next_state = np.expand_dims(batch_next_state, axis=1)

            # 执行训练
            t, b = exe.run(program=fluid.default_main_program(),
                        feed={'state': batch_state,
                              'action': batch_action.astype('int64'),
                              'reward': batch_reward,
                              'next_state': batch_next_state,
                              'done': batch_done},
                        fetch_list=[targetQ_predict_value, best_v])

Tensorflow代码:


import gym
import tensorflow as tf
import numpy as np
import random
from collections import deque

tf.enable_eager_execution()
num_episodes = 500
num_exploration_episodes = 100
max_len_episode = 1000
batch_size = 32
learning_rate = 1e-3
gamma = 1.
initial_epsilon = 1.
final_epsilon = 0.01


class QNetwork(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.dense1 = tf.keras.layers.Dense(units=24, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=24, activation=tf.nn.relu)
        self.dense3 = tf.keras.layers.Dense(units=2)

    def call(self, inputs, training=None, mask=None):
        x = self.dense1(inputs)
        x = self.dense2(x)
        x = self.dense3(x)
        return x

    def predict(self, x, batch_size=None, verbose=0, steps=None):
        q_values = self(x)
        return tf.argmax(q_values, axis=-1)


env = gym.make("CartPole-v1")
model = QNetwork()
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, epsilon=1e-3)
replay_buffer = deque(maxlen=10000)
epsilon = initial_epsilon
for epsilon_id in range(num_episodes):
    state = env.reset()
    epsilon = max(initial_epsilon * (num_exploration_episodes - epsilon_id) /
                  num_exploration_episodes, final_epsilon)
    for t in range(max_len_episode):
        # env.render()
        if random.random() < epsilon:
            action = env.action_space.sample()
        else:
            action = model.predict(tf.constant(np.expand_dims(state, axis=0),
                                               dtype=tf.float32)).numpy()
            action = action[0]

        next_state, reward, done, info = env.step(action)

        reward = -10 if done else reward
        replay_buffer.append((state, action, reward, next_state, done))
        state = next_state

        if done:
            print("episode %d, epsilon %f, score %d" % (epsilon_id, epsilon, t))
            break
        if len(replay_buffer) >= batch_size:
            batch_state, batch_action, batch_reward, batch_next_state, batch_done = \
                [np.array(a, dtype=np.float32) for a in zip(*random.sample(replay_buffer, batch_size))]
            q_value = model(tf.constant(batch_next_state, dtype=tf.float32))
            q_value = tf.reduce_max(q_value, axis=1)
            target = batch_reward + (gamma * q_value) * (1 - batch_done)

            with tf.GradientTape() as tape:

                state_model = model(tf.constant(batch_state))
                action_onehot = tf.one_hot(batch_action, depth=2)
                pred_action_value = tf.reduce_sum(state_model * action_onehot, axis=1)

                loss = tf.losses.mean_squared_error(labels=target,
                                                    predictions=pred_action_value)

            grads = tape.gradient(loss, model.variables)
            optimizer.apply_gradients(grads_and_vars=zip(grads, model.variables))
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#15346
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7