holder_ should not be null
Created by: dubhex
版本、环境信息: 1)PaddlePaddle版本:1.02 3)GPU:k40 4)系统环境:centos6.5
- 训练信息 1)单机,单卡
- 问题描述: CPU下能正常训练,但是改为GPU后就报错,paddle.fluid.core.EnforceNotMet: holder_ should not be null Tensor holds no memory. 具体错误提示如下:
Traceback (most recent call last): File "train_fan_score.py", line 174, in train_score() File "train_fan_score.py", line 94, in train_score fetch_list = [lr.name, avg_cost.name, label_softmax.name, main_label.name], feed = feeder.feed(data)) File "/opt/python/cp27-cp27mu/lib/python2.7/site-packages/paddle/fluid/executor.py", line 470, in run self.executor.run(program.desc, scope, 0, True, True) paddle.fluid.core.EnforceNotMet: holder_ should not be null Tensor holds no memory. Call Tensor::mutable_data first. at [/paddle/paddle/fluid/framework/tensor.cc:22] PaddlePaddle Call Stacks: 0 0x7fa7f3a4b2d6p paddle::platform::EnforceNotMet::EnforceNotMet(std::exception_ptr::exception_ptr, char const*, int) + 486 1 0x7fa7f4c3d502p paddle::framework::Tensor::check_memory_size() const + 226 2 0x7fa7f3a50ef9p float const* paddle::framework::Tensor::data() const + 25 3 0x7fa7f452d8aep paddle::operators::BatchNormGradKernel<paddle::platform::CUDADeviceContext, float>::Compute(paddle::framework::ExecutionContext const&) const + 1886 4 0x7fa7f452eb33p ZNSt17_Function_handlerIFvRKN6paddle9framework16ExecutionContextEEZNKS1_24OpKernelRegistrarFunctorINS0_8platform9CUDAPlaceELb0ELm0EJNS0_9operators19BatchNormGradKernelINS7_17CUDADeviceContextEfEENSA_ISB_dEEEEclEPKcSG_EUlS4_E_E9_M_invokeERKSt9_Any_dataS4 + 35 5 0x7fa7f4b94f83p paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void, boost::detail::variant::void, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) const + 531 6 0x7fa7f4b9205cp paddle::framework::OperatorBase::Run(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) + 252 7 0x7fa7f3b16469p paddle::framework::Executor::RunPreparedContext(paddle::framework::ExecutorPrepareContext*, paddle::framework::Scope*, bool, bool, bool) + 393 8 0x7fa7f3b16f00p paddle::framework::Executor::Run(paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool) + 128 9 0x7fa7f3a30dcdp 10 0x7fa7f3a5be54p pybind11::cpp_function::dispatcher(_object*, _object*, _object*) + 2596 11 0x7fa8300abce8p PyEval_EvalFrameEx + 28264 12 0x7fa8300ae37dp PyEval_EvalCodeEx + 2061 13 0x7fa8300abd70p PyEval_EvalFrameEx + 28400 14 0x7fa8300abe9ep PyEval_EvalFrameEx + 28702 15 0x7fa8300ae37dp PyEval_EvalCodeEx + 2061 16 0x7fa8300ae4b2p PyEval_EvalCode + 50 17 0x7fa8300d81c2p PyRun_FileExFlags + 146 18 0x7fa8300d9559p PyRun_SimpleFileExFlags + 217 19 0x7fa8300ef1ddp Py_Main + 3149 20 0x7fa82f382d1dp __libc_start_main + 253 21 0x4006b1p
export GLOG_v=4 export GLOG_logtostderr=1 后再运行,最下面的提示为: I1127 08:05:34.341182 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.342895 6304 operator.cc:152] CUDAPlace(0) Op(softmax_with_cross_entropy), inputs:{Label[main_label:int64_t100, 1], Logits[softmax_0.tmp_0:float100, 2]}, outputs:{Loss[softmax_with_cross_entropy_0.tmp_1100, 1], Softmax[softmax_with_cross_entropy_0.tmp_0100, 2]}. I1127 08:05:34.342943 6304 operator.cc:140] CUDAPlace(0) Op(mean), inputs:{X[softmax_with_cross_entropy_0.tmp_1:float100, 1]}, outputs:{Out[mean_0.tmp_0-1]}. I1127 08:05:34.342981 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.343063 6304 operator.cc:152] CUDAPlace(0) Op(mean), inputs:{X[softmax_with_cross_entropy_0.tmp_1:float100, 1]}, outputs:{Out[mean_0.tmp_01]}. I1127 08:05:34.343122 6304 operator.cc:140] CUDAPlace(0) Op(cast), inputs:{X[@LR_DECAY_COUNTER@:int64_t1]}, outputs:{Out[cast_0.tmp_0-1]}. I1127 08:05:34.343166 6304 operator.cc:683] expected_kernel_key:data_type[int64_t]:data_layout[ANY_LAYOUT]:place[CPUPlace]:library_type[PLAIN] I1127 08:05:34.343215 6304 operator.cc:152] CUDAPlace(0) Op(cast), inputs:{X[@LR_DECAY_COUNTER@:int64_t1]}, outputs:{Out[cast_0.tmp_01]}. I1127 08:05:34.343246 6304 operator.cc:140] CUDAPlace(0) Op(fill_constant), inputs:{}, outputs:{Out[tmp_11-1]}. I1127 08:05:34.343308 6304 operator.cc:152] CUDAPlace(0) Op(fill_constant), inputs:{}, outputs:{Out[tmp_111]}. I1127 08:05:34.343349 6304 operator.cc:140] CUDAPlace(0) Op(elementwise_div), inputs:{X[cast_0.tmp_0:float1], Y[tmp_11:float1]}, outputs:{Out[tmp_12-1]}. I1127 08:05:34.343382 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.343408 6304 operator.cc:780] Transform Variable cast_0.tmp_0 from data_type[float]:data_layout[NCHW]:place[CPUPlace]:library_type[PLAIN] to data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.343427 6304 scope.cc:129] Create variable cast_0.tmp_0 I1127 08:05:34.343453 6304 data_device_transform.cc:21] DeviceTransform in, src_place CPUPlace dst_place: CUDAPlace(0) I1127 08:05:34.343483 6304 tensor_util.cu:107] TensorCopySync 1 from CPUPlace to CUDAPlace(0) ('Place: ', <paddle.fluid.core.CUDAPlace object at 0x7faefbfa6ba0>) params at './params_e294' is loaded === Epoch 0 === I1127 08:05:34.343655 6304 operator.cc:152] CUDAPlace(0) Op(elementwise_div), inputs:{X[cast_0.tmp_0:float1], Y[tmp_11:float1]}, outputs:{Out[tmp_121]}. I1127 08:05:34.343698 6304 operator.cc:140] CUDAPlace(0) Op(floor), inputs:{X[tmp_12:float1]}, outputs:{Out[floor_0.tmp_0-1]}. I1127 08:05:34.343729 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.343818 6304 operator.cc:152] CUDAPlace(0) Op(floor), inputs:{X[tmp_12:float1]}, outputs:{Out[floor_0.tmp_01]}. I1127 08:05:34.343854 6304 operator.cc:140] CUDAPlace(0) Op(fill_constant), inputs:{}, outputs:{Out[tmp_13-1]}. I1127 08:05:34.343924 6304 operator.cc:152] CUDAPlace(0) Op(fill_constant), inputs:{}, outputs:{Out[tmp_131]}. I1127 08:05:34.343964 6304 operator.cc:140] CUDAPlace(0) Op(elementwise_pow), inputs:{X[tmp_13:float1], Y[floor_0.tmp_0:float1]}, outputs:{Out[tmp_14-1]}. I1127 08:05:34.343998 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.344120 6304 operator.cc:152] CUDAPlace(0) Op(elementwise_pow), inputs:{X[tmp_13:float1], Y[floor_0.tmp_0:float1]}, outputs:{Out[tmp_141]}. I1127 08:05:34.344158 6304 operator.cc:140] CUDAPlace(0) Op(fill_constant), inputs:{}, outputs:{Out[tmp_15-1]}. I1127 08:05:34.344218 6304 operator.cc:152] CUDAPlace(0) Op(fill_constant), inputs:{}, outputs:{Out[tmp_151]}. I1127 08:05:34.344257 6304 operator.cc:140] CUDAPlace(0) Op(elementwise_mul), inputs:{X[tmp_14:float1], Y[tmp_15:float1]}, outputs:{Out[tmp_16-1]}. I1127 08:05:34.344290 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.344394 6304 operator.cc:152] CUDAPlace(0) Op(elementwise_mul), inputs:{X[tmp_14:float1], Y[tmp_15:float1]}, outputs:{Out[tmp_161]}. I1127 08:05:34.344431 6304 operator.cc:140] CUDAPlace(0) Op(fill_constant), inputs:{}, outputs:{Out[mean_0.tmp_0@GRAD-1]}. I1127 08:05:34.344512 6304 operator.cc:152] CUDAPlace(0) Op(fill_constant), inputs:{}, outputs:{Out[mean_0.tmp_0@GRAD1]}. I1127 08:05:34.344555 6304 operator.cc:140] CUDAPlace(0) Op(mean_grad), inputs:{Out@GRAD[mean_0.tmp_0@GRAD:float1], X[softmax_with_cross_entropy_0.tmp_1:float100, 1]}, outputs:{X@GRAD[softmax_with_cross_entropy_0.tmp_1@GRAD-1]}. I1127 08:05:34.344588 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.344660 6304 operator.cc:152] CUDAPlace(0) Op(mean_grad), inputs:{Out@GRAD[mean_0.tmp_0@GRAD:float1], X[softmax_with_cross_entropy_0.tmp_1:float100, 1]}, outputs:{X@GRAD[softmax_with_cross_entropy_0.tmp_1@GRAD100, 1]}. I1127 08:05:34.344708 6304 operator.cc:140] CUDAPlace(0) Op(softmax_with_cross_entropy_grad), inputs:{Label[main_label:int64_t100, 1], Loss[softmax_with_cross_entropy_0.tmp_1:float100, 1], Loss@GRAD[softmax_with_cross_entropy_0.tmp_1@GRAD:float100, 1], Softmax[softmax_with_cross_entropy_0.tmp_0:float100, 2], Softmax@GRAD[softmax_with_cross_entropy_0.tmp_0@GRAD[uninited]]}, outputs:{Logits@GRAD[softmax_0.tmp_0@GRAD-1]}. I1127 08:05:34.344746 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.344839 6304 operator.cc:152] CUDAPlace(0) Op(softmax_with_cross_entropy_grad), inputs:{Label[main_label:int64_t100, 1], Loss[softmax_with_cross_entropy_0.tmp_1:float100, 1], Loss@GRAD[softmax_with_cross_entropy_0.tmp_1@GRAD:float100, 1], Softmax[softmax_with_cross_entropy_0.tmp_0:float100, 2], Softmax@GRAD[softmax_with_cross_entropy_0.tmp_0@GRAD[uninited]]}, outputs:{Logits@GRAD[softmax_0.tmp_0@GRAD100, 2]}. I1127 08:05:34.344882 6304 operator.cc:140] CUDAPlace(0) Op(softmax_grad), inputs:{Out[softmax_0.tmp_0:float100, 2], Out@GRAD[softmax_0.tmp_0@GRAD:float100, 2]}, outputs:{X@GRAD[fc_2.tmp_1@GRAD-1]}. I1127 08:05:34.344921 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[CUDNN] I1127 08:05:34.345041 6304 operator.cc:152] CUDAPlace(0) Op(softmax_grad), inputs:{Out[softmax_0.tmp_0:float100, 2], Out@GRAD[softmax_0.tmp_0@GRAD:float100, 2]}, outputs:{X@GRAD[fc_2.tmp_1@GRAD100, 2]}. I1127 08:05:34.345115 6304 operator.cc:140] CUDAPlace(0) Op(elementwise_add_grad), inputs:{Out@GRAD[fc_2.tmp_1@GRAD:float100, 2], Y[fc_2.b_0:float2]}, outputs:{X@GRAD[fc_2.tmp_0@GRAD-1], Y@GRAD[fc_2.b_0@GRAD-1]}. I1127 08:05:34.345158 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.345260 6304 operator.cc:152] CUDAPlace(0) Op(elementwise_add_grad), inputs:{Out@GRAD[fc_2.tmp_1@GRAD:float100, 2], Y[fc_2.b_0:float2]}, outputs:{X@GRAD[fc_2.tmp_0@GRAD100, 2], Y@GRAD[fc_2.b_0@GRAD2]}. I1127 08:05:34.345312 6304 operator.cc:140] CUDAPlace(0) Op(mul_grad), inputs:{Out[fc_2.tmp_0:float100, 2], Out@GRAD[fc_2.tmp_0@GRAD:float100, 2], X[relu_42.tmp_0:float100, 32], Y[fc_2.w_0:float32, 2]}, outputs:{X@GRAD[relu_42.tmp_0@GRAD-1], Y@GRAD[fc_2.w_0@GRAD-1]}. I1127 08:05:34.345353 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.345494 6304 operator.cc:152] CUDAPlace(0) Op(mul_grad), inputs:{Out[fc_2.tmp_0:float100, 2], Out@GRAD[fc_2.tmp_0@GRAD:float100, 2], X[relu_42.tmp_0:float100, 32], Y[fc_2.w_0:float32, 2]}, outputs:{X@GRAD[relu_42.tmp_0@GRAD100, 32], Y@GRAD[fc_2.w_0@GRAD32, 2]}. I1127 08:05:34.345538 6304 operator.cc:140] CUDAPlace(0) Op(relu_grad), inputs:{Out[relu_42.tmp_0:float100, 32], Out@GRAD[relu_42.tmp_0@GRAD:float100, 32]}, outputs:{X@GRAD[fc_1.tmp_1@GRAD-1]}. I1127 08:05:34.345571 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.345657 6304 operator.cc:152] CUDAPlace(0) Op(relu_grad), inputs:{Out[relu_42.tmp_0:float100, 32], Out@GRAD[relu_42.tmp_0@GRAD:float100, 32]}, outputs:{X@GRAD[fc_1.tmp_1@GRAD100, 32]}. I1127 08:05:34.345705 6304 operator.cc:140] CUDAPlace(0) Op(elementwise_add_grad), inputs:{Out@GRAD[fc_1.tmp_1@GRAD:float100, 32], Y[fc_1.b_0:float32]}, outputs:{X@GRAD[fc_1.tmp_0@GRAD-1], Y@GRAD[fc_1.b_0@GRAD-1]}. I1127 08:05:34.345738 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.345818 6304 operator.cc:152] CUDAPlace(0) Op(elementwise_add_grad), inputs:{Out@GRAD[fc_1.tmp_1@GRAD:float100, 32], Y[fc_1.b_0:float32]}, outputs:{X@GRAD[fc_1.tmp_0@GRAD100, 32], Y@GRAD[fc_1.b_0@GRAD32]}. I1127 08:05:34.345866 6304 operator.cc:140] CUDAPlace(0) Op(mul_grad), inputs:{Out[fc_1.tmp_0:float100, 32], Out@GRAD[fc_1.tmp_0@GRAD:float100, 32], X[relu_41.tmp_0:float100, 8, 4, 4], Y[fc_1.w_0:float128, 32]}, outputs:{X@GRAD[relu_41.tmp_0@GRAD-1], Y@GRAD[fc_1.w_0@GRAD-1]}. I1127 08:05:34.345907 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.346025 6304 operator.cc:152] CUDAPlace(0) Op(mul_grad), inputs:{Out[fc_1.tmp_0:float100, 32], Out@GRAD[fc_1.tmp_0@GRAD:float100, 32], X[relu_41.tmp_0:float100, 8, 4, 4], Y[fc_1.w_0:float128, 32]}, outputs:{X@GRAD[relu_41.tmp_0@GRAD100, 8, 4, 4], Y@GRAD[fc_1.w_0@GRAD128, 32]}. I1127 08:05:34.346067 6304 operator.cc:140] CUDAPlace(0) Op(relu_grad), inputs:{Out[relu_41.tmp_0:float100, 8, 4, 4], Out@GRAD[relu_41.tmp_0@GRAD:float100, 8, 4, 4]}, outputs:{X@GRAD[batch_norm_59.tmp_2@GRAD-1]}. I1127 08:05:34.346125 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.346205 6304 operator.cc:152] CUDAPlace(0) Op(relu_grad), inputs:{Out[relu_41.tmp_0:float100, 8, 4, 4], Out@GRAD[relu_41.tmp_0@GRAD:float100, 8, 4, 4]}, outputs:{X@GRAD[batch_norm_59.tmp_2@GRAD100, 8, 4, 4]}. I1127 08:05:34.346276 6304 operator.cc:140] CUDAPlace(0) Op(batch_norm_grad), inputs:{Bias[batch_norm_59.b_0:float8], SavedMean[batch_norm_59.tmp_0:float8], SavedVariance[batch_norm_59.tmp_1:float8], Scale[batch_norm_59.w_0:float8], X[conv2d_60.tmp_1:float100, 8, 4, 4], Y@GRAD[batch_norm_59.tmp_2@GRAD:float100, 8, 4, 4]}, outputs:{Bias@GRAD[batch_norm_59.b_0@GRAD-1], Scale@GRAD[batch_norm_59.w_0@GRAD-1], X@GRAD[conv2d_60.tmp_1@GRAD-1]}. I1127 08:05:34.346321 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.346484 6304 operator.cc:152] CUDAPlace(0) Op(batch_norm_grad), inputs:{Bias[batch_norm_59.b_0:float8], SavedMean[batch_norm_59.tmp_0:float8], SavedVariance[batch_norm_59.tmp_1:float8], Scale[batch_norm_59.w_0:float8], X[conv2d_60.tmp_1:float100, 8, 4, 4], Y@GRAD[batch_norm_59.tmp_2@GRAD:float100, 8, 4, 4]}, outputs:{Bias@GRAD[batch_norm_59.b_0@GRAD8], Scale@GRAD[batch_norm_59.w_0@GRAD8], X@GRAD[conv2d_60.tmp_1@GRAD100, 8, 4, 4]}. I1127 08:05:34.346534 6304 operator.cc:140] CUDAPlace(0) Op(elementwise_add_grad), inputs:{Out@GRAD[conv2d_60.tmp_1@GRAD:float100, 8, 4, 4], Y[conv2d_60.b_0:float8]}, outputs:{X@GRAD[conv2d_60.tmp_0@GRAD-1], Y@GRAD[conv2d_60.b_0@GRAD-1]}. I1127 08:05:34.346570 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.346657 6304 operator.cc:152] CUDAPlace(0) Op(elementwise_add_grad), inputs:{Out@GRAD[conv2d_60.tmp_1@GRAD:float100, 8, 4, 4], Y[conv2d_60.b_0:float8]}, outputs:{X@GRAD[conv2d_60.tmp_0@GRAD100, 8, 4, 4], Y@GRAD[conv2d_60.b_0@GRAD8]}. I1127 08:05:34.346709 6304 operator.cc:140] CUDAPlace(0) Op(conv2d_grad), inputs:{Bias[], Filter[conv2d_60.w_0:float8, 8, 3, 3], Input[relu_40.tmp_0:float100, 8, 8, 8], Output[conv2d_60.tmp_0:float100, 8, 4, 4], Output@GRAD[conv2d_60.tmp_0@GRAD:float100, 8, 4, 4]}, outputs:{Bias@GRAD[], Filter@GRAD[conv2d_60.w_0@GRAD-1], Input@GRAD[relu_40.tmp_0@GRAD-1]}. I1127 08:05:34.346750 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[CUDNN] I1127 08:05:34.347064 6304 operator.cc:152] CUDAPlace(0) Op(conv2d_grad), inputs:{Bias[], Filter[conv2d_60.w_0:float8, 8, 3, 3], Input[relu_40.tmp_0:float100, 8, 8, 8], Output[conv2d_60.tmp_0:float100, 8, 4, 4], Output@GRAD[conv2d_60.tmp_0@GRAD:float100, 8, 4, 4]}, outputs:{Bias@GRAD[], Filter@GRAD[conv2d_60.w_0@GRAD8, 8, 3, 3], Input@GRAD[relu_40.tmp_0@GRAD100, 8, 8, 8]}. I1127 08:05:34.347127 6304 operator.cc:140] CUDAPlace(0) Op(relu_grad), inputs:{Out[relu_40.tmp_0:float100, 8, 8, 8], Out@GRAD[relu_40.tmp_0@GRAD:float100, 8, 8, 8]}, outputs:{X@GRAD[batch_norm_58.tmp_2@GRAD-1]}. I1127 08:05:34.347163 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.347237 6304 operator.cc:152] CUDAPlace(0) Op(relu_grad), inputs:{Out[relu_40.tmp_0:float100, 8, 8, 8], Out@GRAD[relu_40.tmp_0@GRAD:float100, 8, 8, 8]}, outputs:{X@GRAD[batch_norm_58.tmp_2@GRAD100, 8, 8, 8]}. I1127 08:05:34.347296 6304 operator.cc:140] CUDAPlace(0) Op(batch_norm_grad), inputs:{Bias[batch_norm_58.b_0:float8], SavedMean[batch_norm_58.tmp_0:float8], SavedVariance[batch_norm_58.tmp_1:float8], Scale[batch_norm_58.w_0:float8], X[conv2d_59.tmp_1:float100, 8, 8, 8], Y@GRAD[batch_norm_58.tmp_2@GRAD:float100, 8, 8, 8]}, outputs:{Bias@GRAD[batch_norm_58.b_0@GRAD-1], Scale@GRAD[batch_norm_58.w_0@GRAD-1], X@GRAD[conv2d_59.tmp_1@GRAD-1]}. I1127 08:05:34.347331 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.347450 6304 operator.cc:152] CUDAPlace(0) Op(batch_norm_grad), inputs:{Bias[batch_norm_58.b_0:float8], SavedMean[batch_norm_58.tmp_0:float8], SavedVariance[batch_norm_58.tmp_1:float8], Scale[batch_norm_58.w_0:float8], X[conv2d_59.tmp_1:float100, 8, 8, 8], Y@GRAD[batch_norm_58.tmp_2@GRAD:float100, 8, 8, 8]}, outputs:{Bias@GRAD[batch_norm_58.b_0@GRAD8], Scale@GRAD[batch_norm_58.w_0@GRAD8], X@GRAD[conv2d_59.tmp_1@GRAD100, 8, 8, 8]}. I1127 08:05:34.347506 6304 operator.cc:140] CUDAPlace(0) Op(elementwise_add_grad), inputs:{Out@GRAD[conv2d_59.tmp_1@GRAD:float100, 8, 8, 8], Y[conv2d_59.b_0:float8]}, outputs:{X@GRAD[conv2d_59.tmp_0@GRAD-1], Y@GRAD[conv2d_59.b_0@GRAD-1]}. I1127 08:05:34.347544 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.347628 6304 operator.cc:152] CUDAPlace(0) Op(elementwise_add_grad), inputs:{Out@GRAD[conv2d_59.tmp_1@GRAD:float100, 8, 8, 8], Y[conv2d_59.b_0:float8]}, outputs:{X@GRAD[conv2d_59.tmp_0@GRAD100, 8, 8, 8], Y@GRAD[conv2d_59.b_0@GRAD8]}. I1127 08:05:34.347681 6304 operator.cc:140] CUDAPlace(0) Op(conv2d_grad), inputs:{Bias[], Filter[conv2d_59.w_0:float8, 16, 3, 3], Input[tmp_4:float100, 16, 16, 16], Output[conv2d_59.tmp_0:float100, 8, 8, 8], Output@GRAD[conv2d_59.tmp_0@GRAD:float100, 8, 8, 8]}, outputs:{Bias@GRAD[], Filter@GRAD[conv2d_59.w_0@GRAD-1], Input@GRAD[tmp_4@GRAD-1]}. I1127 08:05:34.347718 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[CUDNN] I1127 08:05:34.347928 6304 operator.cc:152] CUDAPlace(0) Op(conv2d_grad), inputs:{Bias[], Filter[conv2d_59.w_0:float8, 16, 3, 3], Input[tmp_4:float100, 16, 16, 16], Output[conv2d_59.tmp_0:float100, 8, 8, 8], Output@GRAD[conv2d_59.tmp_0@GRAD:float100, 8, 8, 8]}, outputs:{Bias@GRAD[], Filter@GRAD[conv2d_59.w_0@GRAD8, 16, 3, 3], Input@GRAD[tmp_4@GRAD100, 16, 16, 16]}. I1127 08:05:34.347978 6304 operator.cc:140] CUDAPlace(0) Op(elementwise_add_grad), inputs:{Out@GRAD[tmp_4@GRAD:float100, 16, 16, 16], Y[tmp_3:float100, 16, 16, 16]}, outputs:{X@GRAD[batch_norm_24.tmp_2@GRAD-1], Y@GRAD[tmp_3@GRAD@RENAME@0-1]}. I1127 08:05:34.348013 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] I1127 08:05:34.348117 6304 operator.cc:152] CUDAPlace(0) Op(elementwise_add_grad), inputs:{Out@GRAD[tmp_4@GRAD:float100, 16, 16, 16], Y[tmp_3:float100, 16, 16, 16]}, outputs:{X@GRAD[batch_norm_24.tmp_2@GRAD100, 16, 16, 16], Y@GRAD[tmp_3@GRAD@RENAME@0100, 16, 16, 16]}. I1127 08:05:34.348183 6304 operator.cc:140] CUDAPlace(0) Op(batch_norm_grad), inputs:{Bias[batch_norm_24.b_0:float16], SavedMean[batch_norm_24.tmp_0:-1], SavedVariance[batch_norm_24.tmp_1:-1], Scale[batch_norm_24.w_0:float16], X[conv2d_24.tmp_1:float100, 16, 16, 16], Y@GRAD[batch_norm_24.tmp_2@GRAD:float100, 16, 16, 16]}, outputs:{Bias@GRAD[batch_norm_24.b_0@GRAD-1], Scale@GRAD[batch_norm_24.w_0@GRAD-1], X@GRAD[conv2d_24.tmp_1@GRAD-1]}. I1127 08:05:34.348225 6304 operator.cc:683] expected_kernel_key:data_type[float]:data_layout[ANY_LAYOUT]:place[CUDAPlace(0)]:library_type[PLAIN] Traceback (most recent call last): File "train_fan_score.py", line 174, in train_score() File "train_fan_score.py", line 94, in train_score fetch_list = [lr.name, avg_cost.name, label_softmax.name, main_label.name], feed = feeder.feed(data)) File "/opt/python/cp27-cp27mu/lib/python2.7/site-packages/paddle/fluid/executor.py", line 470, in run self.executor.run(program.desc, scope, 0, True, True) paddle.fluid.core.EnforceNotMet: holder_ should not be null Tensor holds no memory. Call Tensor::mutable_data first. at [/paddle/paddle/fluid/framework/tensor.cc:22] PaddlePaddle Call Stacks: 0 0x7faf5d8422d6p paddle::platform::EnforceNotMet::EnforceNotMet(std::exception_ptr::exception_ptr, char const*, int) + 486 1 0x7faf5ea34502p paddle::framework::Tensor::check_memory_size() const + 226 2 0x7faf5d847ef9p float const* paddle::framework::Tensor::data() const + 25 3 0x7faf5e3248aep paddle::operators::BatchNormGradKernel<paddle::platform::CUDADeviceContext, float>::Compute(paddle::framework::ExecutionContext const&) const + 1886 4 0x7faf5e325b33p ZNSt17_Function_handlerIFvRKN6paddle9framework16ExecutionContextEEZNKS1_24OpKernelRegistrarFunctorINS0_8platform9CUDAPlaceELb0ELm0EJNS0_9operators19BatchNormGradKernelINS7_17CUDADeviceContextEfEENSA_ISB_dEEEEclEPKcSG_EUlS4_E_E9_M_invokeERKSt9_Any_dataS4 + 35 5 0x7faf5e98bf83p paddle::framework::OperatorWithKernel::RunImpl(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void, boost::detail::variant::void, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) const + 531 6 0x7faf5e98905cp paddle::framework::OperatorBase::Run(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) + 252 7 0x7faf5d90d469p paddle::framework::Executor::RunPreparedContext(paddle::framework::ExecutorPrepareContext*, paddle::framework::Scope*, bool, bool, bool) + 393 8 0x7faf5d90df00p paddle::framework::Executor::Run(paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool) + 128 9 0x7faf5d827dcdp 10 0x7faf5d852e54p pybind11::cpp_function::dispatcher(_object*, _object*, _object*) + 2596 11 0x7faf99b65ce8p PyEval_EvalFrameEx + 28264 12 0x7faf99b6837dp PyEval_EvalCodeEx + 2061 13 0x7faf99b65d70p PyEval_EvalFrameEx + 28400 14 0x7faf99b65e9ep PyEval_EvalFrameEx + 28702 15 0x7faf99b6837dp PyEval_EvalCodeEx + 2061 16 0x7faf99b684b2p PyEval_EvalCode + 50 17 0x7faf99b921c2p PyRun_FileExFlags + 146 18 0x7faf99b93559p PyRun_SimpleFileExFlags + 217 19 0x7faf99ba91ddp Py_Main + 3149 20 0x7faf98e3cd1dp __libc_start_main + 253 21 0x4006b1p