SRCNN网络-超分辨率重建,项目运行错误,怎么解决?
Created by: zhouhoukui
aistudio里面的经典论文重现项目-SRCNN网络-超分辨率重建,在aistudio里面运行正常,在自己的电脑里面运行出现如下错误:(电脑配置16GB内存,ubuntu14.04系统,安装的paddlepaddle-gpu版,程序中没有使用GPU) 出错代码 model = SRCNN(0.01, 0.001, 50, 15) model.train() 错误信息:
EnforceNotMet Traceback (most recent call last)
<ipython-input-12-db2aa8951561> in <module>()
1 model = SRCNN(0.01, 0.001, 50, 15)
----> 2 model.train()
<ipython-input-10-2f8b73fd4e30> in train(self)
34 Optimizer = fluid.optimizer.AdamOptimizer(learning_rate=self.lr)
35 Optimizer_f = fluid.optimizer.AdamOptimizer(learning_rate=self.lr_f)
---> 36 Optimizer.minimize(y_loss, parameter_list=['conv1_w','conv1_b', 'conv2_w', 'conv2_b'])
37 Optimizer_f.minimize(y_loss, parameter_list=['pred_w', 'pred_b'])
38
/usr/local/anaconda2/lib/python2.7/site-packages/paddle/fluid/optimizer.pyc in minimize(self, loss, startup_program, parameter_list, no_grad_set)
253 """
254 params_grads = append_backward(loss, parameter_list, no_grad_set,
--> 255 [error_clip_callback])
256
257 params_grads = sorted(params_grads, key=lambda x: x[0].name)
/usr/local/anaconda2/lib/python2.7/site-packages/paddle/fluid/backward.pyc in append_backward(loss, parameter_list, no_grad_set, callbacks)
547
548 _append_backward_ops_(root_block, op_path, root_block, no_grad_dict,
--> 549 grad_to_var, callbacks)
550
551 # Because calc_gradient may be called multiple times,
/usr/local/anaconda2/lib/python2.7/site-packages/paddle/fluid/backward.pyc in _append_backward_ops_(block, ops, target_block, no_grad_dict, grad_to_var, callbacks)
332 # Getting op's corresponding grad_op
333 grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
--> 334 op.desc, no_grad_dict[block.idx], grad_sub_block_list)
335
336 grad_op_descs.extend(grad_op_desc)
EnforceNotMet: grad_op_maker_ should not be null
Operator GradOpMaker has not been registered. at [/paddle/paddle/fluid/framework/op_info.h:61]
PaddlePaddle Call Stacks:
0 0x7f5ca40e9736p paddle::platform::EnforceNotMet::EnforceNotMet(std::__exception_ptr::exception_ptr, char const*, int) + 486
1 0x7f5ca40ebfe9p paddle::framework::OpInfo::GradOpMaker() const + 137
2 0x7f5ca40e5222p
3 0x7f5ca40f9604p pybind11::cpp_function::dispatcher(_object*, _object*, _object*) + 2596
4 0x7f5d0a54fcc4p PyEval_EvalFrameEx + 32020
5 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
6 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
7 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
8 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
9 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
10 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
11 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
12 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
13 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
14 0x7f5d0a55170ap PyEval_EvalCode + 26
15 0x7f5d0a54dae0p PyEval_EvalFrameEx + 23344
16 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
17 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
18 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
19 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
20 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
21 0x7f5d0a4da377p
22 0x7f5d0a4b57a3p PyObject_Call + 67
23 0x7f5d0a54a4bep PyEval_EvalFrameEx + 9486
24 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
25 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
26 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
27 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
28 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
29 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
30 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
31 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
32 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
33 0x7f5d0a4da377p
34 0x7f5d0a4b57a3p PyObject_Call + 67
35 0x7f5d0a54a4bep PyEval_EvalFrameEx + 9486
36 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
37 0x7f5d0a4da377p
38 0x7f5d0a4b57a3p PyObject_Call + 67
39 0x7f5d0a54a4bep PyEval_EvalFrameEx + 9486
40 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
41 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
42 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
43 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
44 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
45 0x7f5d0a4da377p
46 0x7f5d0a4b57a3p PyObject_Call + 67
47 0x7f5d0a54a4bep PyEval_EvalFrameEx + 9486
48 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
49 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
50 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
51 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
52 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
53 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
54 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
55 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
56 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
57 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
58 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
59 0x7f5d0a55170ap PyEval_EvalCode + 26
60 0x7f5d0a54dae0p PyEval_EvalFrameEx + 23344
61 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
62 0x7f5d0a54e9b8p PyEval_EvalFrameEx + 27144
63 0x7f5d0a5514e9p PyEval_EvalCodeEx + 2025
64 0x7f5d0a4da28ap
65 0x7f5d0a4b57a3p PyObject_Call + 67
66 0x7f5d0a57e280p
67 0x7f5d0a57e93ep Py_Main + 1374
68 0x7f5d0979af45p __libc_start_main + 245
69 0x5558b12f58bfp