How to use conv_op?
Created by: rationme
'EnforceNotMet: enforce in_dims.size() == filter_dims.size() failed, 4 != 1 Conv input dimension and filter dimension should be the same. at [/paddle/paddle/fluid/operators/conv_op.cc:49]'
when i run my code
main_program, feed=feeder.feed(data),fetch_list=[l2_cost])
and
`def CSRNet(input,label):
def conv_block(ipt, filter_list,pool_size = 2):
return fluid.nets.img_conv_group(
input=ipt,
pool_size=pool_size,
pool_stride=pool_size,
conv_num_filter=filter_list,
conv_filter_size=3,
conv_act='relu',
conv_with_batchnorm=False,
conv_batchnorm_drop_rate=1,
pool_type='max')
frontend_conv1 = conv_block(input,[64,64])
frontend_conv2 = conv_block(frontend_conv1,[128,128])
frontend_conv3 = conv_block(frontend_conv2 ,[256, 256,256])
frontend_conv4 = conv_block(frontend_conv3,[512,512,512],1)`
I can't find where the input dimension is?how to use it?