Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #12526

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 8月 03, 2018 by saxon_zh@saxon_zhGuest

paddle.fluid.core.EnforceNotMet: holder_ should not be null

Created by: ThyrixYang

I've just copied the code from

http://www.paddlepaddle.org/docs/0.14.0/documentation/fluid/zh/new_docs/beginners_guide/basics/image_classification/index.html#train-program

And I got the following error:

Traceback (most recent call last):
  File "try2.py", line 181, in <module>
    feed_order=['pixel', 'label'])
  File "/home/thyrix/.local/lib/python2.7/site-packages/paddle/fluid/trainer.py", line 413, in train
    feed_order)
  File "/home/thyrix/.local/lib/python2.7/site-packages/paddle/fluid/trainer.py", line 469, in _train_by_executor
    self._train_by_any_executor(event_handler, exe, num_epochs, reader)
  File "/home/thyrix/.local/lib/python2.7/site-packages/paddle/fluid/trainer.py", line 481, in _train_by_any_executor
    event_handler(BeginEpochEvent(epoch_id))
  File "try2.py", line 175, in event_handler
    trainer.save_params(params_dirname)
  File "/home/thyrix/.local/lib/python2.7/site-packages/paddle/fluid/trainer.py", line 440, in save_params
    io.save_persistables(exe, dirname=param_path)
  File "/home/thyrix/.local/lib/python2.7/site-packages/paddle/fluid/io.py", line 289, in save_persistables
    filename=filename)
  File "/home/thyrix/.local/lib/python2.7/site-packages/paddle/fluid/io.py", line 167, in save_vars
    filename=filename)
  File "/home/thyrix/.local/lib/python2.7/site-packages/paddle/fluid/io.py", line 198, in save_vars
    executor.run(save_program)
  File "/home/thyrix/.local/lib/python2.7/site-packages/paddle/fluid/executor.py", line 443, in run
    self.executor.run(program.desc, scope, 0, True, True)
paddle.fluid.core.EnforceNotMet: holder_ should not be null
Tensor not initialized yet when Tensor::type() is called. at [/paddle/paddle/fluid/framework/tensor.h:139]
PaddlePaddle Call Stacks: 
0       0x7f524cc6dc76p paddle::platform::EnforceNotMet::EnforceNotMet(std::__exception_ptr::exception_ptr, char const*, int) + 486
1       0x7f524cc70027p paddle::framework::Tensor::type() const + 151
2       0x7f524d753248p paddle::operators::SaveOp::RunImpl(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) const + 1240
3       0x7f524daa218dp paddle::framework::OperatorBase::Run(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) + 205
4       0x7f524cd099efp paddle::framework::Executor::RunPreparedContext(paddle::framework::ExecutorPrepareContext*, paddle::framework::Scope*, bool, bool, bool) + 255
5       0x7f524cd0aa40p paddle::framework::Executor::Run(paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool) + 128
6       0x7f524cc8563bp void pybind11::cpp_function::initialize<pybind11::cpp_function::initialize<void, paddle::framework::Executor, paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool, pybind11::name, pybind11::is_method, pybind11::sibling>(void (paddle::framework::Executor::*)(paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool), pybind11::name const&, pybind11::is_method const&, pybind11::sibling const&)::{lambda(paddle::framework::Executor*, paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool)#1}, void, paddle::framework::Executor*, paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool, pybind11::name, pybind11::is_method, pybind11::sibling>(pybind11::cpp_function::initialize<void, paddle::framework::Executor, paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool, pybind11::name, pybind11::is_method, pybind11::sibling>(void (paddle::framework::Executor::*)(paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool), pybind11::name const&, pybind11::is_method const&, pybind11::sibling const&)::{lambda(paddle::framework::Executor*, paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool)#1}&&, void (*)(paddle::framework::Executor*, paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool), pybind11::name const&, pybind11::is_method const&, pybind11::sibling const&)::{lambda(pybind11::detail::function_call&)#3}::_FUN(pybind11::detail::function_call) + 555
7       0x7f524cc7db44p pybind11::cpp_function::dispatcher(_object*, _object*, _object*) + 2596
8       0x55ef38161d57p PyEval_EvalFrameEx + 29351
9       0x55ef381588cap PyEval_EvalCodeEx + 1754
10      0x55ef3816024ep PyEval_EvalFrameEx + 22430
11      0x55ef381588cap PyEval_EvalCodeEx + 1754
12      0x55ef3816024ep PyEval_EvalFrameEx + 22430
13      0x55ef381588cap PyEval_EvalCodeEx + 1754
14      0x55ef3816024ep PyEval_EvalFrameEx + 22430
15      0x55ef381588cap PyEval_EvalCodeEx + 1754
16      0x55ef3816024ep PyEval_EvalFrameEx + 22430
17      0x55ef3815fd72p PyEval_EvalFrameEx + 21186
18      0x55ef3815fd72p PyEval_EvalFrameEx + 21186
19      0x55ef3815fd72p PyEval_EvalFrameEx + 21186
20      0x55ef3815fd72p PyEval_EvalFrameEx + 21186
21      0x55ef381588cap PyEval_EvalCodeEx + 1754
22      0x55ef3816024ep PyEval_EvalFrameEx + 22430
23      0x55ef381588cap PyEval_EvalCodeEx + 1754
24      0x55ef381581e9p PyEval_EvalCode + 25
25      0x55ef38188bdfp
26      0x55ef38183952p PyRun_FileExFlags + 130
27      0x55ef38182dcdp PyRun_SimpleFileExFlags + 397
28      0x55ef3813258bp Py_Main + 1675
29      0x7f5291965b97p __libc_start_main + 231
30      0x55ef38131e0ap _start + 42

my code:

import paddle
import paddle.fluid as fluid
import numpy
import sys


def vgg_bn_drop(input):
    def conv_block(ipt, num_filter, groups, dropouts):
        return fluid.nets.img_conv_group(
            input=ipt,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max')

    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
    fc1 = fluid.layers.fc(input=drop, size=512, act=None)
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
    fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
    predict = fluid.layers.fc(input=fc2, size=10, act='softmax')
    return predict

def conv_bn_layer(input,
    ch_out,
    filter_size,
    stride,
    padding,
    act='relu',
    bias_attr=False):

    tmp = fluid.layers.conv2d(
        input=input,
        filter_size=filter_size,
        num_filters=ch_out,
        stride=stride,
        padding=padding,
        act=None,
        bias_attr=bias_attr)
    return fluid.layers.batch_norm(input=tmp, act=act)


def shortcut(input, ch_in, ch_out, stride):
    if ch_in != ch_out:
        return conv_bn_layer(input, ch_out, 1, stride, 0, None)
    else:
        return input


def basicblock(input, ch_in, ch_out, stride):
    tmp = conv_bn_layer(input, ch_out, 3, stride, 1)
    tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None, bias_attr=True)
    short = shortcut(input, ch_in, ch_out, stride)
    return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')


def layer_warp(block_func, input, ch_in, ch_out, count, stride):
    tmp = block_func(input, ch_in, ch_out, stride)
    for i in range(1, count):
        tmp = block_func(tmp, ch_out, ch_out, 1)
    return tmp

def resnet_cifar10(ipt, depth=32):
# depth should be one of 20, 32, 44, 56, 110, 1202
    assert (depth - 2) % 6 == 0
    n = (depth - 2) / 6
    nStages = {16, 64, 128}
    conv1 = conv_bn_layer(ipt, ch_out=16, filter_size=3, stride=1, padding=1)
    res1 = layer_warp(basicblock, conv1, 16, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 16, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 32, 64, n, 2)
    pool = fluid.layers.pool2d(
    input=res3, pool_size=8, pool_type='avg', pool_stride=1)
    predict = fluid.layers.fc(input=pool, size=10, act='softmax')
    return predict

def inference_program():
# The image is 32 * 32 with RGB representation.
    data_shape = [3, 32, 32]
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')

    predict = resnet_cifar10(images, 32)
    # predict = vgg_bn_drop(images) # un-comment to use vgg net
    return predict

def train_program():
    predict = inference_program()

    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(cost)
    accuracy = fluid.layers.accuracy(input=predict, label=label)
    return [avg_cost, accuracy]

def optimizer_program():
    return fluid.optimizer.Adam(learning_rate=0.001)

use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
trainer = fluid.Trainer(
    train_func=train_program,
    optimizer_func=optimizer_program,
    place=place)

# Each batch will yield 128 images
BATCH_SIZE = 128

# Reader for training
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.cifar.train10(), buf_size=50000),
batch_size=BATCH_SIZE)

# Reader for testing. A separated data set for testing.
test_reader = paddle.batch(
paddle.dataset.cifar.test10(), batch_size=BATCH_SIZE)

params_dirname = "image_classification_resnet.inference.model"

from paddle.v2.plot import Ploter

train_title = "Train cost"
test_title = "Test cost"
cost_ploter = Ploter(train_title, test_title)

step = 0
def event_handler_plot(event):
    global step
    if isinstance(event, fluid.EndStepEvent):
        if step % 1 == 0:
            cost_ploter.append(train_title, step, event.metrics[0])
            cost_ploter.plot()
        step += 1
    if isinstance(event, fluid.EndEpochEvent):
        avg_cost, accuracy = trainer.test(
            reader=test_reader,
            feed_order=['pixel', 'label'])
        cost_ploter.append(test_title, step, avg_cost)

    # save parameters
    if params_dirname is not None:
        trainer.save_params(params_dirname)

params_dirname = "image_classification_resnet.inference.model"

# event handler to track training and testing process
def event_handler(event):
    if isinstance(event, fluid.EndStepEvent):
        if event.step % 100 == 0:
            print("\nPass %d, Batch %d, Cost %f, Acc %f" %
                (event.step, event.epoch, event.metrics[0],
                event.metrics[1]))
        else:
            sys.stdout.write('.')
            sys.stdout.flush()

    if isinstance(event, fluid.EndEpochEvent):
        # Test against with the test dataset to get accuracy.
        avg_cost, accuracy = trainer.test(
            reader=test_reader, feed_order=['pixel', 'label'])

        print('\nTest with Pass {0}, Loss {1:2.2}, Acc {2:2.2}'.format(event.epoch, avg_cost, accuracy))

    # save parameters
    if params_dirname is not None:
        trainer.save_params(params_dirname)

trainer.train(
    reader=train_reader,
    num_epochs=2,
    event_handler=event_handler,
    feed_order=['pixel', 'label'])

But the linear regression code in the official tutorial worked well, so I think it's not an installation problem.

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#12526
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7