Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #12131

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 7月 13, 2018 by saxon_zh@saxon_zhGuest

use_mkldnn=True表现异常

Created by: bipedalBit

  • 我在MacOS系统中用docker起了一个Ubuntu 16.04的容器
  • 严格按说明安装了mkldnn
  • pip install paddlepaddle安装了paddle 0.14.0
  • 使用fluid搭建了一个3层fc的简单模型
  • fluid.layers.fc的use_mkldnn参数置True
  • 使用fluid.ParallelExecutor运行模型训练程序

日志如下:

INFO: 07-13 05:43:43: model.py:107 * 139679863383808 Train: epoch 0, average cost: 3.017329, average accuracy: 0.363281
INFO: 07-13 05:43:44: model.py:107 * 139679863383808 Train: epoch 1, average cost: 2.489046, average accuracy: 0.483073
INFO: 07-13 05:43:44: model.py:107 * 139679863383808 Train: epoch 2, average cost: 1.946011, average accuracy: 0.545573
INFO: 07-13 05:43:45: model.py:107 * 139679863383808 Train: epoch 3, average cost: 1.320109, average accuracy: 0.591146
INFO: 07-13 05:43:45: model.py:107 * 139679863383808 Train: epoch 4, average cost: 2.642845, average accuracy: 0.569010
INFO: 07-13 05:43:45: model.py:107 * 139679863383808 Train: epoch 5, average cost: 4.254782, average accuracy: 0.548177
INFO: 07-13 05:43:46: model.py:107 * 139679863383808 Train: epoch 6, average cost: 4.210656, average accuracy: 0.570312
INFO: 07-13 05:43:46: model.py:107 * 139679863383808 Train: epoch 7, average cost: 3.032582, average accuracy: 0.600260
INFO: 07-13 05:43:47: model.py:107 * 139679863383808 Train: epoch 8, average cost: 4.139921, average accuracy: 0.606771
INFO: 07-13 05:43:47: model.py:107 * 139679863383808 Train: epoch 9, average cost: 2.891686, average accuracy: 0.619792
INFO: 07-13 05:43:47: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-9
INFO: 07-13 05:43:48: model.py:107 * 139679863383808 Train: epoch 10, average cost: 2.406002, average accuracy: 0.628906
INFO: 07-13 05:43:48: model.py:107 * 139679863383808 Train: epoch 11, average cost: 3.166168, average accuracy: 0.611979
INFO: 07-13 05:43:48: model.py:107 * 139679863383808 Train: epoch 12, average cost: 2.559951, average accuracy: 0.623698
INFO: 07-13 05:43:49: model.py:107 * 139679863383808 Train: epoch 13, average cost: 1.378130, average accuracy: 0.645833
INFO: 07-13 05:43:49: model.py:107 * 139679863383808 Train: epoch 14, average cost: 2.780429, average accuracy: 0.618490
INFO: 07-13 05:43:50: model.py:107 * 139679863383808 Train: epoch 15, average cost: 3.023936, average accuracy: 0.623698
INFO: 07-13 05:43:50: model.py:107 * 139679863383808 Train: epoch 16, average cost: 1.938339, average accuracy: 0.640625
INFO: 07-13 05:43:51: model.py:107 * 139679863383808 Train: epoch 17, average cost: 2.699482, average accuracy: 0.630208
INFO: 07-13 05:43:51: model.py:107 * 139679863383808 Train: epoch 18, average cost: 2.029525, average accuracy: 0.651042
INFO: 07-13 05:43:52: model.py:107 * 139679863383808 Train: epoch 19, average cost: 1.593852, average accuracy: 0.667969
INFO: 07-13 05:43:52: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-19
INFO: 07-13 05:43:52: model.py:107 * 139679863383808 Train: epoch 20, average cost: 1.240289, average accuracy: 0.658854
INFO: 07-13 05:43:52: model.py:107 * 139679863383808 Train: epoch 21, average cost: 2.560953, average accuracy: 0.652344
INFO: 07-13 05:43:53: model.py:107 * 139679863383808 Train: epoch 22, average cost: 2.253163, average accuracy: 0.638021
INFO: 07-13 05:43:53: model.py:107 * 139679863383808 Train: epoch 23, average cost: 2.898263, average accuracy: 0.648438
INFO: 07-13 05:43:54: model.py:107 * 139679863383808 Train: epoch 24, average cost: 1.063407, average accuracy: 0.683594
INFO: 07-13 05:43:54: model.py:107 * 139679863383808 Train: epoch 25, average cost: 0.960033, average accuracy: 0.692708
INFO: 07-13 05:43:55: model.py:107 * 139679863383808 Train: epoch 26, average cost: 2.196545, average accuracy: 0.631510
INFO: 07-13 05:43:55: model.py:107 * 139679863383808 Train: epoch 27, average cost: 2.570275, average accuracy: 0.657552
INFO: 07-13 05:43:56: model.py:107 * 139679863383808 Train: epoch 28, average cost: 0.908734, average accuracy: 0.695312
INFO: 07-13 05:43:56: model.py:107 * 139679863383808 Train: epoch 29, average cost: 1.389157, average accuracy: 0.695312
INFO: 07-13 05:43:56: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-29
INFO: 07-13 05:43:57: model.py:107 * 139679863383808 Train: epoch 30, average cost: 2.379101, average accuracy: 0.684896
INFO: 07-13 05:43:57: model.py:107 * 139679863383808 Train: epoch 31, average cost: 2.564972, average accuracy: 0.656250
INFO: 07-13 05:43:58: model.py:107 * 139679863383808 Train: epoch 32, average cost: 2.475330, average accuracy: 0.664062
INFO: 07-13 05:43:58: model.py:107 * 139679863383808 Train: epoch 33, average cost: 1.951182, average accuracy: 0.688802
INFO: 07-13 05:43:58: model.py:107 * 139679863383808 Train: epoch 34, average cost: 4.177868, average accuracy: 0.647135
INFO: 07-13 05:43:59: model.py:107 * 139679863383808 Train: epoch 35, average cost: 2.891385, average accuracy: 0.666667
INFO: 07-13 05:43:59: model.py:107 * 139679863383808 Train: epoch 36, average cost: 3.416686, average accuracy: 0.664062
INFO: 07-13 05:44:00: model.py:107 * 139679863383808 Train: epoch 37, average cost: 1.928989, average accuracy: 0.675781
INFO: 07-13 05:44:00: model.py:107 * 139679863383808 Train: epoch 38, average cost: 0.993063, average accuracy: 0.726562
INFO: 07-13 05:44:01: model.py:107 * 139679863383808 Train: epoch 39, average cost: 3.475044, average accuracy: 0.645833
INFO: 07-13 05:44:01: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-39
INFO: 07-13 05:44:01: model.py:107 * 139679863383808 Train: epoch 40, average cost: 2.659002, average accuracy: 0.690104
INFO: 07-13 05:44:01: model.py:107 * 139679863383808 Train: epoch 41, average cost: 3.121070, average accuracy: 0.671875
INFO: 07-13 05:44:02: model.py:107 * 139679863383808 Train: epoch 42, average cost: 3.013545, average accuracy: 0.691406
INFO: 07-13 05:44:02: model.py:107 * 139679863383808 Train: epoch 43, average cost: 2.164809, average accuracy: 0.695312
INFO: 07-13 05:44:03: model.py:107 * 139679863383808 Train: epoch 44, average cost: 2.152214, average accuracy: 0.697917
INFO: 07-13 05:44:03: model.py:107 * 139679863383808 Train: epoch 45, average cost: 1.003491, average accuracy: 0.722656
INFO: 07-13 05:44:04: model.py:107 * 139679863383808 Train: epoch 46, average cost: 2.613479, average accuracy: 0.703125
INFO: 07-13 05:44:04: model.py:107 * 139679863383808 Train: epoch 47, average cost: 1.914267, average accuracy: 0.699219
INFO: 07-13 05:44:05: model.py:107 * 139679863383808 Train: epoch 48, average cost: 3.186370, average accuracy: 0.673177
INFO: 07-13 05:44:05: model.py:107 * 139679863383808 Train: epoch 49, average cost: 3.081753, average accuracy: 0.673177
INFO: 07-13 05:44:05: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-49
INFO: 07-13 05:44:05: model.py:107 * 139679863383808 Train: epoch 50, average cost: 1.390708, average accuracy: 0.725260
INFO: 07-13 05:44:06: model.py:107 * 139679863383808 Train: epoch 51, average cost: 1.949504, average accuracy: 0.721354
INFO: 07-13 05:44:06: model.py:107 * 139679863383808 Train: epoch 52, average cost: 1.597929, average accuracy: 0.707031
INFO: 07-13 05:44:07: model.py:107 * 139679863383808 Train: epoch 53, average cost: 0.802412, average accuracy: 0.750000
INFO: 07-13 05:44:07: model.py:107 * 139679863383808 Train: epoch 54, average cost: 2.411009, average accuracy: 0.718750
INFO: 07-13 05:44:08: model.py:107 * 139679863383808 Train: epoch 55, average cost: 1.498306, average accuracy: 0.710938
INFO: 07-13 05:44:08: model.py:107 * 139679863383808 Train: epoch 56, average cost: 1.734822, average accuracy: 0.726562
INFO: 07-13 05:44:09: model.py:107 * 139679863383808 Train: epoch 57, average cost: 1.829362, average accuracy: 0.704427
INFO: 07-13 05:44:09: model.py:107 * 139679863383808 Train: epoch 58, average cost: 1.054880, average accuracy: 0.742188
INFO: 07-13 05:44:09: model.py:107 * 139679863383808 Train: epoch 59, average cost: 1.788491, average accuracy: 0.707031
INFO: 07-13 05:44:10: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-59
INFO: 07-13 05:44:10: model.py:107 * 139679863383808 Train: epoch 60, average cost: 3.511059, average accuracy: 0.712240
INFO: 07-13 05:44:10: model.py:107 * 139679863383808 Train: epoch 61, average cost: 0.976011, average accuracy: 0.740885
INFO: 07-13 05:44:11: model.py:107 * 139679863383808 Train: epoch 62, average cost: 1.044576, average accuracy: 0.743490
INFO: 07-13 05:44:11: model.py:107 * 139679863383808 Train: epoch 63, average cost: 0.899340, average accuracy: 0.757812
INFO: 07-13 05:44:12: model.py:107 * 139679863383808 Train: epoch 64, average cost: 2.477690, average accuracy: 0.717448
INFO: 07-13 05:44:12: model.py:107 * 139679863383808 Train: epoch 65, average cost: 2.377518, average accuracy: 0.699219
INFO: 07-13 05:44:13: model.py:107 * 139679863383808 Train: epoch 66, average cost: 2.021298, average accuracy: 0.703125
INFO: 07-13 05:44:13: model.py:107 * 139679863383808 Train: epoch 67, average cost: 2.554380, average accuracy: 0.708333
INFO: 07-13 05:44:14: model.py:107 * 139679863383808 Train: epoch 68, average cost: 3.546416, average accuracy: 0.694010
INFO: 07-13 05:44:14: model.py:107 * 139679863383808 Train: epoch 69, average cost: 2.458568, average accuracy: 0.722656
INFO: 07-13 05:44:14: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-69
INFO: 07-13 05:44:15: model.py:107 * 139679863383808 Train: epoch 70, average cost: 2.322152, average accuracy: 0.729167
INFO: 07-13 05:44:15: model.py:107 * 139679863383808 Train: epoch 71, average cost: 3.763601, average accuracy: 0.705729
INFO: 07-13 05:44:15: model.py:107 * 139679863383808 Train: epoch 72, average cost: 1.934551, average accuracy: 0.729167
INFO: 07-13 05:44:16: model.py:107 * 139679863383808 Train: epoch 73, average cost: 2.759411, average accuracy: 0.696615
INFO: 07-13 05:44:16: model.py:107 * 139679863383808 Train: epoch 74, average cost: 1.161568, average accuracy: 0.761719
INFO: 07-13 05:44:17: model.py:107 * 139679863383808 Train: epoch 75, average cost: 1.837180, average accuracy: 0.736979
INFO: 07-13 05:44:17: model.py:107 * 139679863383808 Train: epoch 76, average cost: 2.300429, average accuracy: 0.712240
INFO: 07-13 05:44:18: model.py:107 * 139679863383808 Train: epoch 77, average cost: 1.529922, average accuracy: 0.744792
INFO: 07-13 05:44:18: model.py:107 * 139679863383808 Train: epoch 78, average cost: 1.110254, average accuracy: 0.731771
INFO: 07-13 05:44:19: model.py:107 * 139679863383808 Train: epoch 79, average cost: 3.726367, average accuracy: 0.700521
INFO: 07-13 05:44:19: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-79
INFO: 07-13 05:44:19: model.py:107 * 139679863383808 Train: epoch 80, average cost: 5.805529, average accuracy: 0.660156
INFO: 07-13 05:44:20: model.py:107 * 139679863383808 Train: epoch 81, average cost: 1.066115, average accuracy: 0.738281
INFO: 07-13 05:44:20: model.py:107 * 139679863383808 Train: epoch 82, average cost: 0.806044, average accuracy: 0.765625
INFO: 07-13 05:44:21: model.py:107 * 139679863383808 Train: epoch 83, average cost: 2.483238, average accuracy: 0.751302
INFO: 07-13 05:44:21: model.py:107 * 139679863383808 Train: epoch 84, average cost: 1.464043, average accuracy: 0.769531
INFO: 07-13 05:44:22: model.py:107 * 139679863383808 Train: epoch 85, average cost: 3.488322, average accuracy: 0.705729
INFO: 07-13 05:44:22: model.py:107 * 139679863383808 Train: epoch 86, average cost: 3.726289, average accuracy: 0.739583
INFO: 07-13 05:44:23: model.py:107 * 139679863383808 Train: epoch 87, average cost: 1.248387, average accuracy: 0.746094
INFO: 07-13 05:44:23: model.py:107 * 139679863383808 Train: epoch 88, average cost: 3.396407, average accuracy: 0.718750
INFO: 07-13 05:44:24: model.py:107 * 139679863383808 Train: epoch 89, average cost: 1.461747, average accuracy: 0.755208
INFO: 07-13 05:44:24: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-89
INFO: 07-13 05:44:24: model.py:107 * 139679863383808 Train: epoch 90, average cost: 1.207618, average accuracy: 0.768229
INFO: 07-13 05:44:25: model.py:107 * 139679863383808 Train: epoch 91, average cost: 2.252221, average accuracy: 0.736979
INFO: 07-13 05:44:25: model.py:107 * 139679863383808 Train: epoch 92, average cost: 2.414238, average accuracy: 0.743490
INFO: 07-13 05:44:26: model.py:107 * 139679863383808 Train: epoch 93, average cost: 2.154225, average accuracy: 0.714844
INFO: 07-13 05:44:26: model.py:107 * 139679863383808 Train: epoch 94, average cost: 2.673501, average accuracy: 0.697917
INFO: 07-13 05:44:27: model.py:107 * 139679863383808 Train: epoch 95, average cost: 2.010543, average accuracy: 0.725260
INFO: 07-13 05:44:27: model.py:107 * 139679863383808 Train: epoch 96, average cost: 2.981954, average accuracy: 0.692708
INFO: 07-13 05:44:28: model.py:107 * 139679863383808 Train: epoch 97, average cost: 1.559371, average accuracy: 0.765625
INFO: 07-13 05:44:28: model.py:107 * 139679863383808 Train: epoch 98, average cost: 1.222868, average accuracy: 0.763021
INFO: 07-13 05:44:28: model.py:107 * 139679863383808 Train: epoch 99, average cost: 2.264318, average accuracy: 0.768229
INFO: 07-13 05:44:29: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-99
INFO: 07-13 05:44:29: model.py:107 * 139679863383808 Train: epoch 100, average cost: 0.973710, average accuracy: 0.778646
INFO: 07-13 05:44:29: model.py:107 * 139679863383808 Train: epoch 101, average cost: 3.790188, average accuracy: 0.716146
INFO: 07-13 05:44:30: model.py:107 * 139679863383808 Train: epoch 102, average cost: 1.439416, average accuracy: 0.742188
INFO: 07-13 05:44:30: model.py:107 * 139679863383808 Train: epoch 103, average cost: 2.400558, average accuracy: 0.716146
INFO: 07-13 05:44:31: model.py:107 * 139679863383808 Train: epoch 104, average cost: 3.936377, average accuracy: 0.717448
INFO: 07-13 05:44:31: model.py:107 * 139679863383808 Train: epoch 105, average cost: 2.873991, average accuracy: 0.718750
INFO: 07-13 05:44:32: model.py:107 * 139679863383808 Train: epoch 106, average cost: 2.645878, average accuracy: 0.718750
INFO: 07-13 05:44:33: model.py:107 * 139679863383808 Train: epoch 107, average cost: 3.573340, average accuracy: 0.725260
INFO: 07-13 05:44:33: model.py:107 * 139679863383808 Train: epoch 108, average cost: 1.902647, average accuracy: 0.703125
INFO: 07-13 05:44:34: model.py:107 * 139679863383808 Train: epoch 109, average cost: 1.849591, average accuracy: 0.740885
INFO: 07-13 05:44:34: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-109
INFO: 07-13 05:44:34: model.py:107 * 139679863383808 Train: epoch 110, average cost: 1.150515, average accuracy: 0.744792
INFO: 07-13 05:44:35: model.py:107 * 139679863383808 Train: epoch 111, average cost: 2.176013, average accuracy: 0.742188
INFO: 07-13 05:44:35: model.py:107 * 139679863383808 Train: epoch 112, average cost: 1.237140, average accuracy: 0.757812
INFO: 07-13 05:44:35: model.py:107 * 139679863383808 Train: epoch 113, average cost: 2.419860, average accuracy: 0.712240
INFO: 07-13 05:44:36: model.py:107 * 139679863383808 Train: epoch 114, average cost: 1.654727, average accuracy: 0.727865
INFO: 07-13 05:44:36: model.py:107 * 139679863383808 Train: epoch 115, average cost: 1.780760, average accuracy: 0.748698
INFO: 07-13 05:44:37: model.py:107 * 139679863383808 Train: epoch 116, average cost: 1.448064, average accuracy: 0.765625
INFO: 07-13 05:44:37: model.py:107 * 139679863383808 Train: epoch 117, average cost: 2.028671, average accuracy: 0.748698
INFO: 07-13 05:44:38: model.py:107 * 139679863383808 Train: epoch 118, average cost: 3.702690, average accuracy: 0.694010
INFO: 07-13 05:44:38: model.py:107 * 139679863383808 Train: epoch 119, average cost: 1.394666, average accuracy: 0.742188
INFO: 07-13 05:44:38: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-119
INFO: 07-13 05:44:39: model.py:107 * 139679863383808 Train: epoch 120, average cost: 3.621784, average accuracy: 0.709635
INFO: 07-13 05:44:39: model.py:107 * 139679863383808 Train: epoch 121, average cost: 2.855005, average accuracy: 0.735677
INFO: 07-13 05:44:40: model.py:107 * 139679863383808 Train: epoch 122, average cost: 2.628077, average accuracy: 0.712240
INFO: 07-13 05:44:40: model.py:107 * 139679863383808 Train: epoch 123, average cost: 2.993645, average accuracy: 0.716146
INFO: 07-13 05:44:40: model.py:107 * 139679863383808 Train: epoch 124, average cost: 2.969736, average accuracy: 0.705729
INFO: 07-13 05:44:41: model.py:107 * 139679863383808 Train: epoch 125, average cost: 4.065771, average accuracy: 0.662760
INFO: 07-13 05:44:41: model.py:107 * 139679863383808 Train: epoch 126, average cost: 1.303965, average accuracy: 0.752604
INFO: 07-13 05:44:42: model.py:107 * 139679863383808 Train: epoch 127, average cost: 1.919925, average accuracy: 0.720052
INFO: 07-13 05:44:42: model.py:107 * 139679863383808 Train: epoch 128, average cost: 1.942278, average accuracy: 0.742188
INFO: 07-13 05:44:43: model.py:107 * 139679863383808 Train: epoch 129, average cost: 0.955757, average accuracy: 0.770833
INFO: 07-13 05:44:43: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-129
INFO: 07-13 05:44:43: model.py:107 * 139679863383808 Train: epoch 130, average cost: 2.309173, average accuracy: 0.740885
INFO: 07-13 05:44:44: model.py:107 * 139679863383808 Train: epoch 131, average cost: 1.215543, average accuracy: 0.750000
INFO: 07-13 05:44:44: model.py:107 * 139679863383808 Train: epoch 132, average cost: 1.220970, average accuracy: 0.740885
INFO: 07-13 05:44:45: model.py:107 * 139679863383808 Train: epoch 133, average cost: 2.568725, average accuracy: 0.748698
INFO: 07-13 05:44:45: model.py:107 * 139679863383808 Train: epoch 134, average cost: 2.024275, average accuracy: 0.764323
INFO: 07-13 05:44:46: model.py:107 * 139679863383808 Train: epoch 135, average cost: 1.315992, average accuracy: 0.768229
INFO: 07-13 05:44:46: model.py:107 * 139679863383808 Train: epoch 136, average cost: 2.307564, average accuracy: 0.678385
INFO: 07-13 05:44:47: model.py:107 * 139679863383808 Train: epoch 137, average cost: 1.914190, average accuracy: 0.734375
INFO: 07-13 05:44:47: model.py:107 * 139679863383808 Train: epoch 138, average cost: 1.380930, average accuracy: 0.748698
INFO: 07-13 05:44:48: model.py:107 * 139679863383808 Train: epoch 139, average cost: 3.338050, average accuracy: 0.680990
INFO: 07-13 05:44:48: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-139
INFO: 07-13 05:44:48: model.py:107 * 139679863383808 Train: epoch 140, average cost: nan, average accuracy: 0.040365
INFO: 07-13 05:44:48: model.py:107 * 139679863383808 Train: epoch 141, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:49: model.py:107 * 139679863383808 Train: epoch 142, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:44:49: model.py:107 * 139679863383808 Train: epoch 143, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:50: model.py:107 * 139679863383808 Train: epoch 144, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:44:50: model.py:107 * 139679863383808 Train: epoch 145, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:51: model.py:107 * 139679863383808 Train: epoch 146, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:44:51: model.py:107 * 139679863383808 Train: epoch 147, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:52: model.py:107 * 139679863383808 Train: epoch 148, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:52: model.py:107 * 139679863383808 Train: epoch 149, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:52: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-149
INFO: 07-13 05:44:53: model.py:107 * 139679863383808 Train: epoch 150, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:53: model.py:107 * 139679863383808 Train: epoch 151, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:53: model.py:107 * 139679863383808 Train: epoch 152, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:54: model.py:107 * 139679863383808 Train: epoch 153, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:54: model.py:107 * 139679863383808 Train: epoch 154, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:44:55: model.py:107 * 139679863383808 Train: epoch 155, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:55: model.py:107 * 139679863383808 Train: epoch 156, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:44:56: model.py:107 * 139679863383808 Train: epoch 157, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:44:56: model.py:107 * 139679863383808 Train: epoch 158, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:57: model.py:107 * 139679863383808 Train: epoch 159, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:57: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-159
INFO: 07-13 05:44:57: model.py:107 * 139679863383808 Train: epoch 160, average cost: nan, average accuracy: 0.023438
INFO: 07-13 05:44:57: model.py:107 * 139679863383808 Train: epoch 161, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:44:58: model.py:107 * 139679863383808 Train: epoch 162, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:58: model.py:107 * 139679863383808 Train: epoch 163, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:59: model.py:107 * 139679863383808 Train: epoch 164, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:44:59: model.py:107 * 139679863383808 Train: epoch 165, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:00: model.py:107 * 139679863383808 Train: epoch 166, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:00: model.py:107 * 139679863383808 Train: epoch 167, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:01: model.py:107 * 139679863383808 Train: epoch 168, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:01: model.py:107 * 139679863383808 Train: epoch 169, average cost: nan, average accuracy: 0.028646
INFO: 07-13 05:45:01: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-169
INFO: 07-13 05:45:02: model.py:107 * 139679863383808 Train: epoch 170, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:02: model.py:107 * 139679863383808 Train: epoch 171, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:03: model.py:107 * 139679863383808 Train: epoch 172, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:03: model.py:107 * 139679863383808 Train: epoch 173, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:04: model.py:107 * 139679863383808 Train: epoch 174, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:04: model.py:107 * 139679863383808 Train: epoch 175, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:05: model.py:107 * 139679863383808 Train: epoch 176, average cost: nan, average accuracy: 0.023438
INFO: 07-13 05:45:05: model.py:107 * 139679863383808 Train: epoch 177, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:06: model.py:107 * 139679863383808 Train: epoch 178, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:06: model.py:107 * 139679863383808 Train: epoch 179, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:06: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-179
INFO: 07-13 05:45:07: model.py:107 * 139679863383808 Train: epoch 180, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:07: model.py:107 * 139679863383808 Train: epoch 181, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:08: model.py:107 * 139679863383808 Train: epoch 182, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:08: model.py:107 * 139679863383808 Train: epoch 183, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:09: model.py:107 * 139679863383808 Train: epoch 184, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:09: model.py:107 * 139679863383808 Train: epoch 185, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:10: model.py:107 * 139679863383808 Train: epoch 186, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:10: model.py:107 * 139679863383808 Train: epoch 187, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:11: model.py:107 * 139679863383808 Train: epoch 188, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:11: model.py:107 * 139679863383808 Train: epoch 189, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:11: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-189
INFO: 07-13 05:45:12: model.py:107 * 139679863383808 Train: epoch 190, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:12: model.py:107 * 139679863383808 Train: epoch 191, average cost: nan, average accuracy: 0.023438
INFO: 07-13 05:45:12: model.py:107 * 139679863383808 Train: epoch 192, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:13: model.py:107 * 139679863383808 Train: epoch 193, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:13: model.py:107 * 139679863383808 Train: epoch 194, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:14: model.py:107 * 139679863383808 Train: epoch 195, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:14: model.py:107 * 139679863383808 Train: epoch 196, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:15: model.py:107 * 139679863383808 Train: epoch 197, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:15: model.py:107 * 139679863383808 Train: epoch 198, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:15: model.py:107 * 139679863383808 Train: epoch 199, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:16: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-199
INFO: 07-13 05:45:16: model.py:107 * 139679863383808 Train: epoch 200, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:16: model.py:107 * 139679863383808 Train: epoch 201, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:17: model.py:107 * 139679863383808 Train: epoch 202, average cost: nan, average accuracy: 0.028646
INFO: 07-13 05:45:17: model.py:107 * 139679863383808 Train: epoch 203, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:18: model.py:107 * 139679863383808 Train: epoch 204, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:18: model.py:107 * 139679863383808 Train: epoch 205, average cost: nan, average accuracy: 0.020833
INFO: 07-13 05:45:19: model.py:107 * 139679863383808 Train: epoch 206, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:19: model.py:107 * 139679863383808 Train: epoch 207, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:20: model.py:107 * 139679863383808 Train: epoch 208, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:20: model.py:107 * 139679863383808 Train: epoch 209, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:20: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-209
INFO: 07-13 05:45:21: model.py:107 * 139679863383808 Train: epoch 210, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:21: model.py:107 * 139679863383808 Train: epoch 211, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:22: model.py:107 * 139679863383808 Train: epoch 212, average cost: nan, average accuracy: 0.028646
INFO: 07-13 05:45:22: model.py:107 * 139679863383808 Train: epoch 213, average cost: nan, average accuracy: 0.023438
INFO: 07-13 05:45:23: model.py:107 * 139679863383808 Train: epoch 214, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:23: model.py:107 * 139679863383808 Train: epoch 215, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:24: model.py:107 * 139679863383808 Train: epoch 216, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:24: model.py:107 * 139679863383808 Train: epoch 217, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:25: model.py:107 * 139679863383808 Train: epoch 218, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:25: model.py:107 * 139679863383808 Train: epoch 219, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:25: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-219
INFO: 07-13 05:45:26: model.py:107 * 139679863383808 Train: epoch 220, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:26: model.py:107 * 139679863383808 Train: epoch 221, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:27: model.py:107 * 139679863383808 Train: epoch 222, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:27: model.py:107 * 139679863383808 Train: epoch 223, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:28: model.py:107 * 139679863383808 Train: epoch 224, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:28: model.py:107 * 139679863383808 Train: epoch 225, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:29: model.py:107 * 139679863383808 Train: epoch 226, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:29: model.py:107 * 139679863383808 Train: epoch 227, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:29: model.py:107 * 139679863383808 Train: epoch 228, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:30: model.py:107 * 139679863383808 Train: epoch 229, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:30: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-229
INFO: 07-13 05:45:30: model.py:107 * 139679863383808 Train: epoch 230, average cost: nan, average accuracy: 0.023438
INFO: 07-13 05:45:31: model.py:107 * 139679863383808 Train: epoch 231, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:31: model.py:107 * 139679863383808 Train: epoch 232, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:32: model.py:107 * 139679863383808 Train: epoch 233, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:32: model.py:107 * 139679863383808 Train: epoch 234, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:33: model.py:107 * 139679863383808 Train: epoch 235, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:33: model.py:107 * 139679863383808 Train: epoch 236, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:34: model.py:107 * 139679863383808 Train: epoch 237, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:34: model.py:107 * 139679863383808 Train: epoch 238, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:35: model.py:107 * 139679863383808 Train: epoch 239, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:35: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-239
INFO: 07-13 05:45:35: model.py:107 * 139679863383808 Train: epoch 240, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:36: model.py:107 * 139679863383808 Train: epoch 241, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:36: model.py:107 * 139679863383808 Train: epoch 242, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:36: model.py:107 * 139679863383808 Train: epoch 243, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:37: model.py:107 * 139679863383808 Train: epoch 244, average cost: nan, average accuracy: 0.023438
INFO: 07-13 05:45:37: model.py:107 * 139679863383808 Train: epoch 245, average cost: nan, average accuracy: 0.023438
INFO: 07-13 05:45:38: model.py:107 * 139679863383808 Train: epoch 246, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:38: model.py:107 * 139679863383808 Train: epoch 247, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:39: model.py:107 * 139679863383808 Train: epoch 248, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:39: model.py:107 * 139679863383808 Train: epoch 249, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:39: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-249
INFO: 07-13 05:45:40: model.py:107 * 139679863383808 Train: epoch 250, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:40: model.py:107 * 139679863383808 Train: epoch 251, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:41: model.py:107 * 139679863383808 Train: epoch 252, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:42: model.py:107 * 139679863383808 Train: epoch 253, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:42: model.py:107 * 139679863383808 Train: epoch 254, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:43: model.py:107 * 139679863383808 Train: epoch 255, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:43: model.py:107 * 139679863383808 Train: epoch 256, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:44: model.py:107 * 139679863383808 Train: epoch 257, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:44: model.py:107 * 139679863383808 Train: epoch 258, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:44: model.py:107 * 139679863383808 Train: epoch 259, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:44: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-259
INFO: 07-13 05:45:45: model.py:107 * 139679863383808 Train: epoch 260, average cost: nan, average accuracy: 0.023438
INFO: 07-13 05:45:45: model.py:107 * 139679863383808 Train: epoch 261, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:46: model.py:107 * 139679863383808 Train: epoch 262, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:46: model.py:107 * 139679863383808 Train: epoch 263, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:47: model.py:107 * 139679863383808 Train: epoch 264, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:47: model.py:107 * 139679863383808 Train: epoch 265, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:48: model.py:107 * 139679863383808 Train: epoch 266, average cost: nan, average accuracy: 0.028646
INFO: 07-13 05:45:48: model.py:107 * 139679863383808 Train: epoch 267, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:49: model.py:107 * 139679863383808 Train: epoch 268, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:49: model.py:107 * 139679863383808 Train: epoch 269, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:49: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-269
INFO: 07-13 05:45:50: model.py:107 * 139679863383808 Train: epoch 270, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:50: model.py:107 * 139679863383808 Train: epoch 271, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:51: model.py:107 * 139679863383808 Train: epoch 272, average cost: nan, average accuracy: 0.023438
INFO: 07-13 05:45:51: model.py:107 * 139679863383808 Train: epoch 273, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:51: model.py:107 * 139679863383808 Train: epoch 274, average cost: nan, average accuracy: 0.028646
INFO: 07-13 05:45:52: model.py:107 * 139679863383808 Train: epoch 275, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:52: model.py:107 * 139679863383808 Train: epoch 276, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:53: model.py:107 * 139679863383808 Train: epoch 277, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:53: model.py:107 * 139679863383808 Train: epoch 278, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:54: model.py:107 * 139679863383808 Train: epoch 279, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:54: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-279
INFO: 07-13 05:45:54: model.py:107 * 139679863383808 Train: epoch 280, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:55: model.py:107 * 139679863383808 Train: epoch 281, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:55: model.py:107 * 139679863383808 Train: epoch 282, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:56: model.py:107 * 139679863383808 Train: epoch 283, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:56: model.py:107 * 139679863383808 Train: epoch 284, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:57: model.py:107 * 139679863383808 Train: epoch 285, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:57: model.py:107 * 139679863383808 Train: epoch 286, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:58: model.py:107 * 139679863383808 Train: epoch 287, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:45:58: model.py:107 * 139679863383808 Train: epoch 288, average cost: nan, average accuracy: 0.027344
INFO: 07-13 05:45:59: model.py:107 * 139679863383808 Train: epoch 289, average cost: nan, average accuracy: 0.026042
INFO: 07-13 05:45:59: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-289
INFO: 07-13 05:45:59: model.py:107 * 139679863383808 Train: epoch 290, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:46:00: model.py:107 * 139679863383808 Train: epoch 291, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:46:00: model.py:107 * 139679863383808 Train: epoch 292, average cost: nan, average accuracy: 0.023438
INFO: 07-13 05:46:00: model.py:107 * 139679863383808 Train: epoch 293, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:46:01: model.py:107 * 139679863383808 Train: epoch 294, average cost: nan, average accuracy: 0.023438
INFO: 07-13 05:46:01: model.py:107 * 139679863383808 Train: epoch 295, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:46:02: model.py:107 * 139679863383808 Train: epoch 296, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:46:02: model.py:107 * 139679863383808 Train: epoch 297, average cost: nan, average accuracy: 0.023438
INFO: 07-13 05:46:03: model.py:107 * 139679863383808 Train: epoch 298, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:46:03: model.py:107 * 139679863383808 Train: epoch 299, average cost: nan, average accuracy: 0.024740
INFO: 07-13 05:46:03: model_io.py:83 * 139679863383808 Saved inference model to ./models/infer-epoch-299
INFO: 07-13 05:46:03: model.py:181 * 139679863383808 Costs 140.58s.

请注意日志中的average cost变化情况:

  • 波动比较剧烈,并非单调变化
  • epoch 140开始average cost变成了nan

接下来我将模型中所有fc层的use_mkldnn参数置False,重复实验,日志如下:

INFO: 07-13 05:48:12: model.py:107 * 140114397865728 Train: epoch 0, average cost: 1.909084, average accuracy: 0.386719
INFO: 07-13 05:48:13: model.py:107 * 140114397865728 Train: epoch 1, average cost: 1.525706, average accuracy: 0.515625
INFO: 07-13 05:48:13: model.py:107 * 140114397865728 Train: epoch 2, average cost: 1.335058, average accuracy: 0.589844
INFO: 07-13 05:48:14: model.py:107 * 140114397865728 Train: epoch 3, average cost: 1.217955, average accuracy: 0.623698
INFO: 07-13 05:48:14: model.py:107 * 140114397865728 Train: epoch 4, average cost: 1.132739, average accuracy: 0.647135
INFO: 07-13 05:48:15: model.py:107 * 140114397865728 Train: epoch 5, average cost: 1.065525, average accuracy: 0.662760
INFO: 07-13 05:48:15: model.py:107 * 140114397865728 Train: epoch 6, average cost: 1.010285, average accuracy: 0.691406
INFO: 07-13 05:48:16: model.py:107 * 140114397865728 Train: epoch 7, average cost: 0.963846, average accuracy: 0.704427
INFO: 07-13 05:48:16: model.py:107 * 140114397865728 Train: epoch 8, average cost: 0.924057, average accuracy: 0.720052
INFO: 07-13 05:48:16: model.py:107 * 140114397865728 Train: epoch 9, average cost: 0.889385, average accuracy: 0.723958
INFO: 07-13 05:48:16: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-9
INFO: 07-13 05:48:17: model.py:107 * 140114397865728 Train: epoch 10, average cost: 0.858741, average accuracy: 0.731771
INFO: 07-13 05:48:17: model.py:107 * 140114397865728 Train: epoch 11, average cost: 0.831309, average accuracy: 0.736979
INFO: 07-13 05:48:18: model.py:107 * 140114397865728 Train: epoch 12, average cost: 0.806434, average accuracy: 0.743490
INFO: 07-13 05:48:18: model.py:107 * 140114397865728 Train: epoch 13, average cost: 0.783616, average accuracy: 0.748698
INFO: 07-13 05:48:19: model.py:107 * 140114397865728 Train: epoch 14, average cost: 0.762484, average accuracy: 0.756510
INFO: 07-13 05:48:19: model.py:107 * 140114397865728 Train: epoch 15, average cost: 0.742775, average accuracy: 0.764323
INFO: 07-13 05:48:20: model.py:107 * 140114397865728 Train: epoch 16, average cost: 0.724286, average accuracy: 0.768229
INFO: 07-13 05:48:20: model.py:107 * 140114397865728 Train: epoch 17, average cost: 0.706880, average accuracy: 0.770833
INFO: 07-13 05:48:21: model.py:107 * 140114397865728 Train: epoch 18, average cost: 0.690451, average accuracy: 0.774740
INFO: 07-13 05:48:21: model.py:107 * 140114397865728 Train: epoch 19, average cost: 0.674930, average accuracy: 0.779948
INFO: 07-13 05:48:21: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-19
INFO: 07-13 05:48:22: model.py:107 * 140114397865728 Train: epoch 20, average cost: 0.660255, average accuracy: 0.787760
INFO: 07-13 05:48:22: model.py:107 * 140114397865728 Train: epoch 21, average cost: 0.646379, average accuracy: 0.792969
INFO: 07-13 05:48:23: model.py:107 * 140114397865728 Train: epoch 22, average cost: 0.633254, average accuracy: 0.794271
INFO: 07-13 05:48:23: model.py:107 * 140114397865728 Train: epoch 23, average cost: 0.620842, average accuracy: 0.796875
INFO: 07-13 05:48:23: model.py:107 * 140114397865728 Train: epoch 24, average cost: 0.609107, average accuracy: 0.800781
INFO: 07-13 05:48:24: model.py:107 * 140114397865728 Train: epoch 25, average cost: 0.598015, average accuracy: 0.805990
INFO: 07-13 05:48:24: model.py:107 * 140114397865728 Train: epoch 26, average cost: 0.587536, average accuracy: 0.811198
INFO: 07-13 05:48:25: model.py:107 * 140114397865728 Train: epoch 27, average cost: 0.577637, average accuracy: 0.816406
INFO: 07-13 05:48:25: model.py:107 * 140114397865728 Train: epoch 28, average cost: 0.568282, average accuracy: 0.817708
INFO: 07-13 05:48:26: model.py:107 * 140114397865728 Train: epoch 29, average cost: 0.559435, average accuracy: 0.816406
INFO: 07-13 05:48:26: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-29
INFO: 07-13 05:48:26: model.py:107 * 140114397865728 Train: epoch 30, average cost: 0.551061, average accuracy: 0.819010
INFO: 07-13 05:48:27: model.py:107 * 140114397865728 Train: epoch 31, average cost: 0.543127, average accuracy: 0.821615
INFO: 07-13 05:48:27: model.py:107 * 140114397865728 Train: epoch 32, average cost: 0.535598, average accuracy: 0.826823
INFO: 07-13 05:48:28: model.py:107 * 140114397865728 Train: epoch 33, average cost: 0.528441, average accuracy: 0.829427
INFO: 07-13 05:48:28: model.py:107 * 140114397865728 Train: epoch 34, average cost: 0.521621, average accuracy: 0.834635
INFO: 07-13 05:48:29: model.py:107 * 140114397865728 Train: epoch 35, average cost: 0.515109, average accuracy: 0.839844
INFO: 07-13 05:48:29: model.py:107 * 140114397865728 Train: epoch 36, average cost: 0.508882, average accuracy: 0.845052
INFO: 07-13 05:48:29: model.py:107 * 140114397865728 Train: epoch 37, average cost: 0.502917, average accuracy: 0.848958
INFO: 07-13 05:48:30: model.py:107 * 140114397865728 Train: epoch 38, average cost: 0.497191, average accuracy: 0.851562
INFO: 07-13 05:48:30: model.py:107 * 140114397865728 Train: epoch 39, average cost: 0.491690, average accuracy: 0.852865
INFO: 07-13 05:48:30: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-39
INFO: 07-13 05:48:31: model.py:107 * 140114397865728 Train: epoch 40, average cost: 0.486399, average accuracy: 0.854167
INFO: 07-13 05:48:31: model.py:107 * 140114397865728 Train: epoch 41, average cost: 0.481306, average accuracy: 0.856771
INFO: 07-13 05:48:32: model.py:107 * 140114397865728 Train: epoch 42, average cost: 0.476398, average accuracy: 0.858073
INFO: 07-13 05:48:32: model.py:107 * 140114397865728 Train: epoch 43, average cost: 0.471667, average accuracy: 0.859375
INFO: 07-13 05:48:33: model.py:107 * 140114397865728 Train: epoch 44, average cost: 0.467103, average accuracy: 0.861979
INFO: 07-13 05:48:33: model.py:107 * 140114397865728 Train: epoch 45, average cost: 0.462696, average accuracy: 0.860677
INFO: 07-13 05:48:34: model.py:107 * 140114397865728 Train: epoch 46, average cost: 0.458438, average accuracy: 0.860677
INFO: 07-13 05:48:34: model.py:107 * 140114397865728 Train: epoch 47, average cost: 0.454321, average accuracy: 0.861979
INFO: 07-13 05:48:35: model.py:107 * 140114397865728 Train: epoch 48, average cost: 0.450337, average accuracy: 0.861979
INFO: 07-13 05:48:35: model.py:107 * 140114397865728 Train: epoch 49, average cost: 0.446481, average accuracy: 0.863281
INFO: 07-13 05:48:35: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-49
INFO: 07-13 05:48:36: model.py:107 * 140114397865728 Train: epoch 50, average cost: 0.442744, average accuracy: 0.865885
INFO: 07-13 05:48:36: model.py:107 * 140114397865728 Train: epoch 51, average cost: 0.439119, average accuracy: 0.869792
INFO: 07-13 05:48:36: model.py:107 * 140114397865728 Train: epoch 52, average cost: 0.435600, average accuracy: 0.869792
INFO: 07-13 05:48:37: model.py:107 * 140114397865728 Train: epoch 53, average cost: 0.432183, average accuracy: 0.869792
INFO: 07-13 05:48:37: model.py:107 * 140114397865728 Train: epoch 54, average cost: 0.428858, average accuracy: 0.871094
INFO: 07-13 05:48:38: model.py:107 * 140114397865728 Train: epoch 55, average cost: 0.425620, average accuracy: 0.873698
INFO: 07-13 05:48:38: model.py:107 * 140114397865728 Train: epoch 56, average cost: 0.422464, average accuracy: 0.873698
INFO: 07-13 05:48:39: model.py:107 * 140114397865728 Train: epoch 57, average cost: 0.419382, average accuracy: 0.873698
INFO: 07-13 05:48:39: model.py:107 * 140114397865728 Train: epoch 58, average cost: 0.416369, average accuracy: 0.872396
INFO: 07-13 05:48:40: model.py:107 * 140114397865728 Train: epoch 59, average cost: 0.413414, average accuracy: 0.872396
INFO: 07-13 05:48:40: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-59
INFO: 07-13 05:48:40: model.py:107 * 140114397865728 Train: epoch 60, average cost: 0.410515, average accuracy: 0.872396
INFO: 07-13 05:48:41: model.py:107 * 140114397865728 Train: epoch 61, average cost: 0.407665, average accuracy: 0.872396
INFO: 07-13 05:48:41: model.py:107 * 140114397865728 Train: epoch 62, average cost: 0.404858, average accuracy: 0.875000
INFO: 07-13 05:48:42: model.py:107 * 140114397865728 Train: epoch 63, average cost: 0.402091, average accuracy: 0.877604
INFO: 07-13 05:48:42: model.py:107 * 140114397865728 Train: epoch 64, average cost: 0.399358, average accuracy: 0.878906
INFO: 07-13 05:48:43: model.py:107 * 140114397865728 Train: epoch 65, average cost: 0.396655, average accuracy: 0.881510
INFO: 07-13 05:48:43: model.py:107 * 140114397865728 Train: epoch 66, average cost: 0.393976, average accuracy: 0.882812
INFO: 07-13 05:48:44: model.py:107 * 140114397865728 Train: epoch 67, average cost: 0.391321, average accuracy: 0.884115
INFO: 07-13 05:48:44: model.py:107 * 140114397865728 Train: epoch 68, average cost: 0.388684, average accuracy: 0.884115
INFO: 07-13 05:48:44: model.py:107 * 140114397865728 Train: epoch 69, average cost: 0.386066, average accuracy: 0.882812
INFO: 07-13 05:48:45: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-69
INFO: 07-13 05:48:45: model.py:107 * 140114397865728 Train: epoch 70, average cost: 0.383469, average accuracy: 0.886719
INFO: 07-13 05:48:45: model.py:107 * 140114397865728 Train: epoch 71, average cost: 0.380891, average accuracy: 0.888021
INFO: 07-13 05:48:46: model.py:107 * 140114397865728 Train: epoch 72, average cost: 0.378329, average accuracy: 0.888021
INFO: 07-13 05:48:46: model.py:107 * 140114397865728 Train: epoch 73, average cost: 0.375786, average accuracy: 0.890625
INFO: 07-13 05:48:47: model.py:107 * 140114397865728 Train: epoch 74, average cost: 0.373263, average accuracy: 0.888021
INFO: 07-13 05:48:47: model.py:107 * 140114397865728 Train: epoch 75, average cost: 0.370758, average accuracy: 0.889323
INFO: 07-13 05:48:48: model.py:107 * 140114397865728 Train: epoch 76, average cost: 0.368266, average accuracy: 0.889323
INFO: 07-13 05:48:48: model.py:107 * 140114397865728 Train: epoch 77, average cost: 0.365791, average accuracy: 0.889323
INFO: 07-13 05:48:49: model.py:107 * 140114397865728 Train: epoch 78, average cost: 0.363341, average accuracy: 0.890625
INFO: 07-13 05:48:49: model.py:107 * 140114397865728 Train: epoch 79, average cost: 0.360928, average accuracy: 0.891927
INFO: 07-13 05:48:49: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-79
INFO: 07-13 05:48:50: model.py:107 * 140114397865728 Train: epoch 80, average cost: 0.358570, average accuracy: 0.894531
INFO: 07-13 05:48:51: model.py:107 * 140114397865728 Train: epoch 81, average cost: 0.356296, average accuracy: 0.894531
INFO: 07-13 05:48:51: model.py:107 * 140114397865728 Train: epoch 82, average cost: 0.354139, average accuracy: 0.893229
INFO: 07-13 05:48:52: model.py:107 * 140114397865728 Train: epoch 83, average cost: 0.352122, average accuracy: 0.890625
INFO: 07-13 05:48:53: model.py:107 * 140114397865728 Train: epoch 84, average cost: 0.350266, average accuracy: 0.890625
INFO: 07-13 05:48:54: model.py:107 * 140114397865728 Train: epoch 85, average cost: 0.348568, average accuracy: 0.891927
INFO: 07-13 05:48:54: model.py:107 * 140114397865728 Train: epoch 86, average cost: 0.347023, average accuracy: 0.893229
INFO: 07-13 05:48:55: model.py:107 * 140114397865728 Train: epoch 87, average cost: 0.345597, average accuracy: 0.894531
INFO: 07-13 05:48:55: model.py:107 * 140114397865728 Train: epoch 88, average cost: 0.344256, average accuracy: 0.894531
INFO: 07-13 05:48:56: model.py:107 * 140114397865728 Train: epoch 89, average cost: 0.342973, average accuracy: 0.894531
INFO: 07-13 05:48:56: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-89
INFO: 07-13 05:48:56: model.py:107 * 140114397865728 Train: epoch 90, average cost: 0.341739, average accuracy: 0.895833
INFO: 07-13 05:48:57: model.py:107 * 140114397865728 Train: epoch 91, average cost: 0.340549, average accuracy: 0.897135
INFO: 07-13 05:48:57: model.py:107 * 140114397865728 Train: epoch 92, average cost: 0.339428, average accuracy: 0.895833
INFO: 07-13 05:48:58: model.py:107 * 140114397865728 Train: epoch 93, average cost: 0.338405, average accuracy: 0.898438
INFO: 07-13 05:48:58: model.py:107 * 140114397865728 Train: epoch 94, average cost: 0.337501, average accuracy: 0.897135
INFO: 07-13 05:48:59: model.py:107 * 140114397865728 Train: epoch 95, average cost: 0.336680, average accuracy: 0.901042
INFO: 07-13 05:48:59: model.py:107 * 140114397865728 Train: epoch 96, average cost: 0.335774, average accuracy: 0.899740
INFO: 07-13 05:48:59: model.py:107 * 140114397865728 Train: epoch 97, average cost: 0.334488, average accuracy: 0.895833
INFO: 07-13 05:49:00: model.py:107 * 140114397865728 Train: epoch 98, average cost: 0.332654, average accuracy: 0.894531
INFO: 07-13 05:49:00: model.py:107 * 140114397865728 Train: epoch 99, average cost: 0.330539, average accuracy: 0.891927
INFO: 07-13 05:49:00: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-99
INFO: 07-13 05:49:01: model.py:107 * 140114397865728 Train: epoch 100, average cost: 0.328448, average accuracy: 0.893229
INFO: 07-13 05:49:01: model.py:107 * 140114397865728 Train: epoch 101, average cost: 0.326209, average accuracy: 0.895833
INFO: 07-13 05:49:02: model.py:107 * 140114397865728 Train: epoch 102, average cost: 0.323677, average accuracy: 0.899740
INFO: 07-13 05:49:02: model.py:107 * 140114397865728 Train: epoch 103, average cost: 0.320724, average accuracy: 0.899740
INFO: 07-13 05:49:03: model.py:107 * 140114397865728 Train: epoch 104, average cost: 0.317199, average accuracy: 0.901042
INFO: 07-13 05:49:03: model.py:107 * 140114397865728 Train: epoch 105, average cost: 0.313265, average accuracy: 0.907552
INFO: 07-13 05:49:04: model.py:107 * 140114397865728 Train: epoch 106, average cost: 0.309318, average accuracy: 0.910156
INFO: 07-13 05:49:04: model.py:107 * 140114397865728 Train: epoch 107, average cost: 0.305740, average accuracy: 0.910156
INFO: 07-13 05:49:05: model.py:107 * 140114397865728 Train: epoch 108, average cost: 0.302637, average accuracy: 0.911458
INFO: 07-13 05:49:05: model.py:107 * 140114397865728 Train: epoch 109, average cost: 0.299950, average accuracy: 0.911458
INFO: 07-13 05:49:05: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-109
INFO: 07-13 05:49:06: model.py:107 * 140114397865728 Train: epoch 110, average cost: 0.297540, average accuracy: 0.912760
INFO: 07-13 05:49:06: model.py:107 * 140114397865728 Train: epoch 111, average cost: 0.295327, average accuracy: 0.911458
INFO: 07-13 05:49:07: model.py:107 * 140114397865728 Train: epoch 112, average cost: 0.293345, average accuracy: 0.910156
INFO: 07-13 05:49:07: model.py:107 * 140114397865728 Train: epoch 113, average cost: 0.291716, average accuracy: 0.910156
INFO: 07-13 05:49:07: model.py:107 * 140114397865728 Train: epoch 114, average cost: 0.290582, average accuracy: 0.911458
INFO: 07-13 05:49:08: model.py:107 * 140114397865728 Train: epoch 115, average cost: 0.290137, average accuracy: 0.908854
INFO: 07-13 05:49:08: model.py:107 * 140114397865728 Train: epoch 116, average cost: 0.290795, average accuracy: 0.910156
INFO: 07-13 05:49:09: model.py:107 * 140114397865728 Train: epoch 117, average cost: 0.293188, average accuracy: 0.907552
INFO: 07-13 05:49:09: model.py:107 * 140114397865728 Train: epoch 118, average cost: 0.297799, average accuracy: 0.901042
INFO: 07-13 05:49:10: model.py:107 * 140114397865728 Train: epoch 119, average cost: 0.301919, average accuracy: 0.899740
INFO: 07-13 05:49:10: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-119
INFO: 07-13 05:49:10: model.py:107 * 140114397865728 Train: epoch 120, average cost: 0.295988, average accuracy: 0.898438
INFO: 07-13 05:49:11: model.py:107 * 140114397865728 Train: epoch 121, average cost: 0.280668, average accuracy: 0.908854
INFO: 07-13 05:49:12: model.py:107 * 140114397865728 Train: epoch 122, average cost: 0.271416, average accuracy: 0.917969
INFO: 07-13 05:49:12: model.py:107 * 140114397865728 Train: epoch 123, average cost: 0.262373, average accuracy: 0.919271
INFO: 07-13 05:49:12: model.py:107 * 140114397865728 Train: epoch 124, average cost: 0.257423, average accuracy: 0.925781
INFO: 07-13 05:49:13: model.py:107 * 140114397865728 Train: epoch 125, average cost: 0.255082, average accuracy: 0.928385
INFO: 07-13 05:49:13: model.py:107 * 140114397865728 Train: epoch 126, average cost: 0.253528, average accuracy: 0.930990
INFO: 07-13 05:49:14: model.py:107 * 140114397865728 Train: epoch 127, average cost: 0.251863, average accuracy: 0.933594
INFO: 07-13 05:49:14: model.py:107 * 140114397865728 Train: epoch 128, average cost: 0.249926, average accuracy: 0.932292
INFO: 07-13 05:49:15: model.py:107 * 140114397865728 Train: epoch 129, average cost: 0.247772, average accuracy: 0.932292
INFO: 07-13 05:49:15: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-129
INFO: 07-13 05:49:15: model.py:107 * 140114397865728 Train: epoch 130, average cost: 0.245534, average accuracy: 0.933594
INFO: 07-13 05:49:16: model.py:107 * 140114397865728 Train: epoch 131, average cost: 0.243272, average accuracy: 0.933594
INFO: 07-13 05:49:16: model.py:107 * 140114397865728 Train: epoch 132, average cost: 0.241031, average accuracy: 0.933594
INFO: 07-13 05:49:17: model.py:107 * 140114397865728 Train: epoch 133, average cost: 0.238807, average accuracy: 0.933594
INFO: 07-13 05:49:17: model.py:107 * 140114397865728 Train: epoch 134, average cost: 0.236601, average accuracy: 0.933594
INFO: 07-13 05:49:18: model.py:107 * 140114397865728 Train: epoch 135, average cost: 0.234447, average accuracy: 0.933594
INFO: 07-13 05:49:18: model.py:107 * 140114397865728 Train: epoch 136, average cost: 0.232368, average accuracy: 0.933594
INFO: 07-13 05:49:19: model.py:107 * 140114397865728 Train: epoch 137, average cost: 0.230380, average accuracy: 0.938802
INFO: 07-13 05:49:19: model.py:107 * 140114397865728 Train: epoch 138, average cost: 0.228487, average accuracy: 0.940104
INFO: 07-13 05:49:20: model.py:107 * 140114397865728 Train: epoch 139, average cost: 0.226699, average accuracy: 0.940104
INFO: 07-13 05:49:20: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-139
INFO: 07-13 05:49:20: model.py:107 * 140114397865728 Train: epoch 140, average cost: 0.225019, average accuracy: 0.938802
INFO: 07-13 05:49:21: model.py:107 * 140114397865728 Train: epoch 141, average cost: 0.223448, average accuracy: 0.936198
INFO: 07-13 05:49:21: model.py:107 * 140114397865728 Train: epoch 142, average cost: 0.221990, average accuracy: 0.940104
INFO: 07-13 05:49:22: model.py:107 * 140114397865728 Train: epoch 143, average cost: 0.220646, average accuracy: 0.940104
INFO: 07-13 05:49:22: model.py:107 * 140114397865728 Train: epoch 144, average cost: 0.219399, average accuracy: 0.940104
INFO: 07-13 05:49:23: model.py:107 * 140114397865728 Train: epoch 145, average cost: 0.218204, average accuracy: 0.940104
INFO: 07-13 05:49:23: model.py:107 * 140114397865728 Train: epoch 146, average cost: 0.216982, average accuracy: 0.937500
INFO: 07-13 05:49:24: model.py:107 * 140114397865728 Train: epoch 147, average cost: 0.215618, average accuracy: 0.936198
INFO: 07-13 05:49:24: model.py:107 * 140114397865728 Train: epoch 148, average cost: 0.213996, average accuracy: 0.937500
INFO: 07-13 05:49:25: model.py:107 * 140114397865728 Train: epoch 149, average cost: 0.212039, average accuracy: 0.937500
INFO: 07-13 05:49:25: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-149
INFO: 07-13 05:49:25: model.py:107 * 140114397865728 Train: epoch 150, average cost: 0.209745, average accuracy: 0.938802
INFO: 07-13 05:49:26: model.py:107 * 140114397865728 Train: epoch 151, average cost: 0.207219, average accuracy: 0.940104
INFO: 07-13 05:49:26: model.py:107 * 140114397865728 Train: epoch 152, average cost: 0.204637, average accuracy: 0.940104
INFO: 07-13 05:49:27: model.py:107 * 140114397865728 Train: epoch 153, average cost: 0.202251, average accuracy: 0.941406
INFO: 07-13 05:49:27: model.py:107 * 140114397865728 Train: epoch 154, average cost: 0.200310, average accuracy: 0.940104
INFO: 07-13 05:49:27: model.py:107 * 140114397865728 Train: epoch 155, average cost: 0.199096, average accuracy: 0.936198
INFO: 07-13 05:49:28: model.py:107 * 140114397865728 Train: epoch 156, average cost: 0.198498, average accuracy: 0.933594
INFO: 07-13 05:49:28: model.py:107 * 140114397865728 Train: epoch 157, average cost: 0.198319, average accuracy: 0.933594
INFO: 07-13 05:49:29: model.py:107 * 140114397865728 Train: epoch 158, average cost: 0.202391, average accuracy: 0.934896
INFO: 07-13 05:49:29: model.py:107 * 140114397865728 Train: epoch 159, average cost: 0.218657, average accuracy: 0.924479
INFO: 07-13 05:49:29: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-159
INFO: 07-13 05:49:30: model.py:107 * 140114397865728 Train: epoch 160, average cost: 0.225229, average accuracy: 0.925781
INFO: 07-13 05:49:30: model.py:107 * 140114397865728 Train: epoch 161, average cost: 0.205415, average accuracy: 0.929688
INFO: 07-13 05:49:31: model.py:107 * 140114397865728 Train: epoch 162, average cost: 0.204412, average accuracy: 0.929688
INFO: 07-13 05:49:31: model.py:107 * 140114397865728 Train: epoch 163, average cost: 0.198788, average accuracy: 0.936198
INFO: 07-13 05:49:32: model.py:107 * 140114397865728 Train: epoch 164, average cost: 0.193269, average accuracy: 0.940104
INFO: 07-13 05:49:32: model.py:107 * 140114397865728 Train: epoch 165, average cost: 0.190245, average accuracy: 0.942708
INFO: 07-13 05:49:33: model.py:107 * 140114397865728 Train: epoch 166, average cost: 0.186108, average accuracy: 0.941406
INFO: 07-13 05:49:33: model.py:107 * 140114397865728 Train: epoch 167, average cost: 0.181401, average accuracy: 0.944010
INFO: 07-13 05:49:34: model.py:107 * 140114397865728 Train: epoch 168, average cost: 0.177324, average accuracy: 0.945312
INFO: 07-13 05:49:34: model.py:107 * 140114397865728 Train: epoch 169, average cost: 0.174355, average accuracy: 0.944010
INFO: 07-13 05:49:34: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-169
INFO: 07-13 05:49:35: model.py:107 * 140114397865728 Train: epoch 170, average cost: 0.172266, average accuracy: 0.946615
INFO: 07-13 05:49:35: model.py:107 * 140114397865728 Train: epoch 171, average cost: 0.170699, average accuracy: 0.949219
INFO: 07-13 05:49:36: model.py:107 * 140114397865728 Train: epoch 172, average cost: 0.169309, average accuracy: 0.947917
INFO: 07-13 05:49:36: model.py:107 * 140114397865728 Train: epoch 173, average cost: 0.167879, average accuracy: 0.947917
INFO: 07-13 05:49:37: model.py:107 * 140114397865728 Train: epoch 174, average cost: 0.166327, average accuracy: 0.947917
INFO: 07-13 05:49:37: model.py:107 * 140114397865728 Train: epoch 175, average cost: 0.164675, average accuracy: 0.947917
INFO: 07-13 05:49:38: model.py:107 * 140114397865728 Train: epoch 176, average cost: 0.162992, average accuracy: 0.947917
INFO: 07-13 05:49:38: model.py:107 * 140114397865728 Train: epoch 177, average cost: 0.161334, average accuracy: 0.947917
INFO: 07-13 05:49:39: model.py:107 * 140114397865728 Train: epoch 178, average cost: 0.159728, average accuracy: 0.947917
INFO: 07-13 05:49:39: model.py:107 * 140114397865728 Train: epoch 179, average cost: 0.158195, average accuracy: 0.949219
INFO: 07-13 05:49:39: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-179
INFO: 07-13 05:49:40: model.py:107 * 140114397865728 Train: epoch 180, average cost: 0.156748, average accuracy: 0.947917
INFO: 07-13 05:49:40: model.py:107 * 140114397865728 Train: epoch 181, average cost: 0.155421, average accuracy: 0.946615
INFO: 07-13 05:49:41: model.py:107 * 140114397865728 Train: epoch 182, average cost: 0.154250, average accuracy: 0.949219
INFO: 07-13 05:49:41: model.py:107 * 140114397865728 Train: epoch 183, average cost: 0.153260, average accuracy: 0.950521
INFO: 07-13 05:49:42: model.py:107 * 140114397865728 Train: epoch 184, average cost: 0.152467, average accuracy: 0.949219
INFO: 07-13 05:49:42: model.py:107 * 140114397865728 Train: epoch 185, average cost: 0.151896, average accuracy: 0.950521
INFO: 07-13 05:49:43: model.py:107 * 140114397865728 Train: epoch 186, average cost: 0.151789, average accuracy: 0.950521
INFO: 07-13 05:49:43: model.py:107 * 140114397865728 Train: epoch 187, average cost: 0.153187, average accuracy: 0.949219
INFO: 07-13 05:49:43: model.py:107 * 140114397865728 Train: epoch 188, average cost: 0.159610, average accuracy: 0.947917
INFO: 07-13 05:49:44: model.py:107 * 140114397865728 Train: epoch 189, average cost: 0.164103, average accuracy: 0.946615
INFO: 07-13 05:49:44: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-189
INFO: 07-13 05:49:44: model.py:107 * 140114397865728 Train: epoch 190, average cost: 0.153677, average accuracy: 0.958333
INFO: 07-13 05:49:45: model.py:107 * 140114397865728 Train: epoch 191, average cost: 0.153694, average accuracy: 0.960938
INFO: 07-13 05:49:45: model.py:107 * 140114397865728 Train: epoch 192, average cost: 0.164557, average accuracy: 0.949219
INFO: 07-13 05:49:46: model.py:107 * 140114397865728 Train: epoch 193, average cost: 0.164621, average accuracy: 0.944010
INFO: 07-13 05:49:46: model.py:107 * 140114397865728 Train: epoch 194, average cost: 0.148349, average accuracy: 0.958333
INFO: 07-13 05:49:47: model.py:107 * 140114397865728 Train: epoch 195, average cost: 0.157004, average accuracy: 0.951823
INFO: 07-13 05:49:47: model.py:107 * 140114397865728 Train: epoch 196, average cost: 0.156266, average accuracy: 0.957031
INFO: 07-13 05:49:48: model.py:107 * 140114397865728 Train: epoch 197, average cost: 0.147878, average accuracy: 0.959635
INFO: 07-13 05:49:48: model.py:107 * 140114397865728 Train: epoch 198, average cost: 0.138221, average accuracy: 0.964844
INFO: 07-13 05:49:49: model.py:107 * 140114397865728 Train: epoch 199, average cost: 0.128520, average accuracy: 0.966146
INFO: 07-13 05:49:49: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-199
INFO: 07-13 05:49:49: model.py:107 * 140114397865728 Train: epoch 200, average cost: 0.121668, average accuracy: 0.967448
INFO: 07-13 05:49:50: model.py:107 * 140114397865728 Train: epoch 201, average cost: 0.117491, average accuracy: 0.967448
INFO: 07-13 05:49:50: model.py:107 * 140114397865728 Train: epoch 202, average cost: 0.115036, average accuracy: 0.968750
INFO: 07-13 05:49:51: model.py:107 * 140114397865728 Train: epoch 203, average cost: 0.113341, average accuracy: 0.970052
INFO: 07-13 05:49:51: model.py:107 * 140114397865728 Train: epoch 204, average cost: 0.111901, average accuracy: 0.968750
INFO: 07-13 05:49:52: model.py:107 * 140114397865728 Train: epoch 205, average cost: 0.110533, average accuracy: 0.967448
INFO: 07-13 05:49:52: model.py:107 * 140114397865728 Train: epoch 206, average cost: 0.109177, average accuracy: 0.968750
INFO: 07-13 05:49:53: model.py:107 * 140114397865728 Train: epoch 207, average cost: 0.107819, average accuracy: 0.970052
INFO: 07-13 05:49:53: model.py:107 * 140114397865728 Train: epoch 208, average cost: 0.106465, average accuracy: 0.968750
INFO: 07-13 05:49:54: model.py:107 * 140114397865728 Train: epoch 209, average cost: 0.105129, average accuracy: 0.970052
INFO: 07-13 05:49:54: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-209
INFO: 07-13 05:49:54: model.py:107 * 140114397865728 Train: epoch 210, average cost: 0.103818, average accuracy: 0.970052
INFO: 07-13 05:49:54: model.py:107 * 140114397865728 Train: epoch 211, average cost: 0.102523, average accuracy: 0.972656
INFO: 07-13 05:49:55: model.py:107 * 140114397865728 Train: epoch 212, average cost: 0.101254, average accuracy: 0.972656
INFO: 07-13 05:49:55: model.py:107 * 140114397865728 Train: epoch 213, average cost: 0.100004, average accuracy: 0.972656
INFO: 07-13 05:49:56: model.py:107 * 140114397865728 Train: epoch 214, average cost: 0.098774, average accuracy: 0.973958
INFO: 07-13 05:49:56: model.py:107 * 140114397865728 Train: epoch 215, average cost: 0.097565, average accuracy: 0.975260
INFO: 07-13 05:49:57: model.py:107 * 140114397865728 Train: epoch 216, average cost: 0.096376, average accuracy: 0.975260
INFO: 07-13 05:49:57: model.py:107 * 140114397865728 Train: epoch 217, average cost: 0.095215, average accuracy: 0.975260
INFO: 07-13 05:49:58: model.py:107 * 140114397865728 Train: epoch 218, average cost: 0.094087, average accuracy: 0.972656
INFO: 07-13 05:49:58: model.py:107 * 140114397865728 Train: epoch 219, average cost: 0.093006, average accuracy: 0.973958
INFO: 07-13 05:49:58: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-219
INFO: 07-13 05:49:59: model.py:107 * 140114397865728 Train: epoch 220, average cost: 0.091997, average accuracy: 0.973958
INFO: 07-13 05:49:59: model.py:107 * 140114397865728 Train: epoch 221, average cost: 0.091084, average accuracy: 0.975260
INFO: 07-13 05:50:00: model.py:107 * 140114397865728 Train: epoch 222, average cost: 0.090321, average accuracy: 0.973958
INFO: 07-13 05:50:00: model.py:107 * 140114397865728 Train: epoch 223, average cost: 0.089819, average accuracy: 0.975260
INFO: 07-13 05:50:01: model.py:107 * 140114397865728 Train: epoch 224, average cost: 0.089848, average accuracy: 0.973958
INFO: 07-13 05:50:01: model.py:107 * 140114397865728 Train: epoch 225, average cost: 0.091241, average accuracy: 0.973958
INFO: 07-13 05:50:02: model.py:107 * 140114397865728 Train: epoch 226, average cost: 0.096940, average accuracy: 0.970052
INFO: 07-13 05:50:02: model.py:107 * 140114397865728 Train: epoch 227, average cost: 0.106213, average accuracy: 0.963542
INFO: 07-13 05:50:03: model.py:107 * 140114397865728 Train: epoch 228, average cost: 0.111724, average accuracy: 0.968750
INFO: 07-13 05:50:03: model.py:107 * 140114397865728 Train: epoch 229, average cost: 0.125354, average accuracy: 0.963542
INFO: 07-13 05:50:03: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-229
INFO: 07-13 05:50:04: model.py:107 * 140114397865728 Train: epoch 230, average cost: 0.143199, average accuracy: 0.950521
INFO: 07-13 05:50:04: model.py:107 * 140114397865728 Train: epoch 231, average cost: 0.148402, average accuracy: 0.936198
INFO: 07-13 05:50:05: model.py:107 * 140114397865728 Train: epoch 232, average cost: 0.115296, average accuracy: 0.947917
INFO: 07-13 05:50:05: model.py:107 * 140114397865728 Train: epoch 233, average cost: 0.097335, average accuracy: 0.963542
INFO: 07-13 05:50:06: model.py:107 * 140114397865728 Train: epoch 234, average cost: 0.092931, average accuracy: 0.971354
INFO: 07-13 05:50:06: model.py:107 * 140114397865728 Train: epoch 235, average cost: 0.090197, average accuracy: 0.972656
INFO: 07-13 05:50:06: model.py:107 * 140114397865728 Train: epoch 236, average cost: 0.087572, average accuracy: 0.972656
INFO: 07-13 05:50:07: model.py:107 * 140114397865728 Train: epoch 237, average cost: 0.084076, average accuracy: 0.975260
INFO: 07-13 05:50:07: model.py:107 * 140114397865728 Train: epoch 238, average cost: 0.081117, average accuracy: 0.977865
INFO: 07-13 05:50:08: model.py:107 * 140114397865728 Train: epoch 239, average cost: 0.078545, average accuracy: 0.979167
INFO: 07-13 05:50:08: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-239
INFO: 07-13 05:50:08: model.py:107 * 140114397865728 Train: epoch 240, average cost: 0.075903, average accuracy: 0.979167
INFO: 07-13 05:50:09: model.py:107 * 140114397865728 Train: epoch 241, average cost: 0.073264, average accuracy: 0.980469
INFO: 07-13 05:50:09: model.py:107 * 140114397865728 Train: epoch 242, average cost: 0.070776, average accuracy: 0.981771
INFO: 07-13 05:50:10: model.py:107 * 140114397865728 Train: epoch 243, average cost: 0.068556, average accuracy: 0.988281
INFO: 07-13 05:50:10: model.py:107 * 140114397865728 Train: epoch 244, average cost: 0.066624, average accuracy: 0.988281
INFO: 07-13 05:50:11: model.py:107 * 140114397865728 Train: epoch 245, average cost: 0.064953, average accuracy: 0.988281
INFO: 07-13 05:50:11: model.py:107 * 140114397865728 Train: epoch 246, average cost: 0.063499, average accuracy: 0.986979
INFO: 07-13 05:50:12: model.py:107 * 140114397865728 Train: epoch 247, average cost: 0.062218, average accuracy: 0.986979
INFO: 07-13 05:50:12: model.py:107 * 140114397865728 Train: epoch 248, average cost: 0.061073, average accuracy: 0.988281
INFO: 07-13 05:50:13: model.py:107 * 140114397865728 Train: epoch 249, average cost: 0.060034, average accuracy: 0.988281
INFO: 07-13 05:50:13: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-249
INFO: 07-13 05:50:13: model.py:107 * 140114397865728 Train: epoch 250, average cost: 0.059080, average accuracy: 0.986979
INFO: 07-13 05:50:14: model.py:107 * 140114397865728 Train: epoch 251, average cost: 0.058196, average accuracy: 0.988281
INFO: 07-13 05:50:14: model.py:107 * 140114397865728 Train: epoch 252, average cost: 0.057366, average accuracy: 0.988281
INFO: 07-13 05:50:15: model.py:107 * 140114397865728 Train: epoch 253, average cost: 0.056579, average accuracy: 0.988281
INFO: 07-13 05:50:15: model.py:107 * 140114397865728 Train: epoch 254, average cost: 0.055825, average accuracy: 0.989583
INFO: 07-13 05:50:16: model.py:107 * 140114397865728 Train: epoch 255, average cost: 0.055094, average accuracy: 0.989583
INFO: 07-13 05:50:16: model.py:107 * 140114397865728 Train: epoch 256, average cost: 0.054381, average accuracy: 0.989583
INFO: 07-13 05:50:17: model.py:107 * 140114397865728 Train: epoch 257, average cost: 0.053679, average accuracy: 0.989583
INFO: 07-13 05:50:17: model.py:107 * 140114397865728 Train: epoch 258, average cost: 0.052985, average accuracy: 0.989583
INFO: 07-13 05:50:18: model.py:107 * 140114397865728 Train: epoch 259, average cost: 0.052299, average accuracy: 0.989583
INFO: 07-13 05:50:18: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-259
INFO: 07-13 05:50:18: model.py:107 * 140114397865728 Train: epoch 260, average cost: 0.051618, average accuracy: 0.989583
INFO: 07-13 05:50:19: model.py:107 * 140114397865728 Train: epoch 261, average cost: 0.050952, average accuracy: 0.990885
INFO: 07-13 05:50:19: model.py:107 * 140114397865728 Train: epoch 262, average cost: 0.050317, average accuracy: 0.990885
INFO: 07-13 05:50:20: model.py:107 * 140114397865728 Train: epoch 263, average cost: 0.049732, average accuracy: 0.990885
INFO: 07-13 05:50:20: model.py:107 * 140114397865728 Train: epoch 264, average cost: 0.049227, average accuracy: 0.990885
INFO: 07-13 05:50:20: model.py:107 * 140114397865728 Train: epoch 265, average cost: 0.048857, average accuracy: 0.990885
INFO: 07-13 05:50:21: model.py:107 * 140114397865728 Train: epoch 266, average cost: 0.048690, average accuracy: 0.990885
INFO: 07-13 05:50:21: model.py:107 * 140114397865728 Train: epoch 267, average cost: 0.048727, average accuracy: 0.990885
INFO: 07-13 05:50:22: model.py:107 * 140114397865728 Train: epoch 268, average cost: 0.048668, average accuracy: 0.990885
INFO: 07-13 05:50:22: model.py:107 * 140114397865728 Train: epoch 269, average cost: 0.048280, average accuracy: 0.990885
INFO: 07-13 05:50:22: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-269
INFO: 07-13 05:50:23: model.py:107 * 140114397865728 Train: epoch 270, average cost: 0.048154, average accuracy: 0.990885
INFO: 07-13 05:50:23: model.py:107 * 140114397865728 Train: epoch 271, average cost: 0.049162, average accuracy: 0.989583
INFO: 07-13 05:50:24: model.py:107 * 140114397865728 Train: epoch 272, average cost: 0.052616, average accuracy: 0.989583
INFO: 07-13 05:50:24: model.py:107 * 140114397865728 Train: epoch 273, average cost: 0.062186, average accuracy: 0.986979
INFO: 07-13 05:50:25: model.py:107 * 140114397865728 Train: epoch 274, average cost: 0.064216, average accuracy: 0.985677
INFO: 07-13 05:50:25: model.py:107 * 140114397865728 Train: epoch 275, average cost: 0.073691, average accuracy: 0.981771
INFO: 07-13 05:50:26: model.py:107 * 140114397865728 Train: epoch 276, average cost: 0.082758, average accuracy: 0.977865
INFO: 07-13 05:50:26: model.py:107 * 140114397865728 Train: epoch 277, average cost: 0.089908, average accuracy: 0.968750
INFO: 07-13 05:50:27: model.py:107 * 140114397865728 Train: epoch 278, average cost: 0.117145, average accuracy: 0.947917
INFO: 07-13 05:50:27: model.py:107 * 140114397865728 Train: epoch 279, average cost: 0.089141, average accuracy: 0.968750
INFO: 07-13 05:50:27: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-279
INFO: 07-13 05:50:28: model.py:107 * 140114397865728 Train: epoch 280, average cost: 0.073769, average accuracy: 0.976562
INFO: 07-13 05:50:28: model.py:107 * 140114397865728 Train: epoch 281, average cost: 0.063202, average accuracy: 0.984375
INFO: 07-13 05:50:29: model.py:107 * 140114397865728 Train: epoch 282, average cost: 0.063268, average accuracy: 0.981771
INFO: 07-13 05:50:29: model.py:107 * 140114397865728 Train: epoch 283, average cost: 0.061688, average accuracy: 0.983073
INFO: 07-13 05:50:30: model.py:107 * 140114397865728 Train: epoch 284, average cost: 0.059305, average accuracy: 0.984375
INFO: 07-13 05:50:30: model.py:107 * 140114397865728 Train: epoch 285, average cost: 0.057513, average accuracy: 0.984375
INFO: 07-13 05:50:31: model.py:107 * 140114397865728 Train: epoch 286, average cost: 0.056200, average accuracy: 0.986979
INFO: 07-13 05:50:31: model.py:107 * 140114397865728 Train: epoch 287, average cost: 0.054862, average accuracy: 0.986979
INFO: 07-13 05:50:31: model.py:107 * 140114397865728 Train: epoch 288, average cost: 0.053535, average accuracy: 0.986979
INFO: 07-13 05:50:32: model.py:107 * 140114397865728 Train: epoch 289, average cost: 0.052065, average accuracy: 0.988281
INFO: 07-13 05:50:32: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-289
INFO: 07-13 05:50:32: model.py:107 * 140114397865728 Train: epoch 290, average cost: 0.050557, average accuracy: 0.988281
INFO: 07-13 05:50:33: model.py:107 * 140114397865728 Train: epoch 291, average cost: 0.049154, average accuracy: 0.988281
INFO: 07-13 05:50:33: model.py:107 * 140114397865728 Train: epoch 292, average cost: 0.047842, average accuracy: 0.989583
INFO: 07-13 05:50:34: model.py:107 * 140114397865728 Train: epoch 293, average cost: 0.046646, average accuracy: 0.989583
INFO: 07-13 05:50:34: model.py:107 * 140114397865728 Train: epoch 294, average cost: 0.045621, average accuracy: 0.990885
INFO: 07-13 05:50:35: model.py:107 * 140114397865728 Train: epoch 295, average cost: 0.044743, average accuracy: 0.990885
INFO: 07-13 05:50:35: model.py:107 * 140114397865728 Train: epoch 296, average cost: 0.043806, average accuracy: 0.990885
INFO: 07-13 05:50:36: model.py:107 * 140114397865728 Train: epoch 297, average cost: 0.042730, average accuracy: 0.992188
INFO: 07-13 05:50:36: model.py:107 * 140114397865728 Train: epoch 298, average cost: 0.041650, average accuracy: 0.993490
INFO: 07-13 05:50:37: model.py:107 * 140114397865728 Train: epoch 299, average cost: 0.040772, average accuracy: 0.993490
INFO: 07-13 05:50:37: model_io.py:83 * 140114397865728 Saved inference model to ./models/infer-epoch-299
INFO: 07-13 05:50:37: model.py:181 * 140114397865728 Costs 144.99s.

可以看到:

  • average accuracy单调增长
  • average cost单调下降
  • 300 epoch耗时仅比使用mkldnn多了不到5秒

模型搭建代码如下:

    def _build_model(self, is_test=False):
        """模型搭建"""
        data = fluid.layers.data(name='data', shape=[128], dtype='float32')
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')

        fc_1 = fluid.layers.fc(input=data, size=470, act='elu', use_mkldnn=False,
            is_test=is_test)
        fc_2 = fluid.layers.fc(input=fc_1, size=470, act='elu', use_mkldnn=False,
            is_test=is_test)

        prediction = fluid.layers.fc(input=fc_2, size=self.class_dim,
            act='softmax', name='prediction', use_mkldnn=False, is_test=is_test)
        cost = fluid.layers.cross_entropy(input=prediction, label=label)
        avg_cost = fluid.layers.mean(x=cost, name='avg_cost')
        acc = fluid.layers.accuracy(input=prediction, label=label)

模型训练代码如下:

    def fit(self, train_reader):
        """模型训练
        执行模型训练过程。

        Args:
            train_reader: generator, 训练数据batch generator
        """
        # 创建模型
        cost, acc, prediction = self._build_model()
        # 优化器配置
        optimizer = fluid.optimizer.Adamax(learning_rate=self.lr)
        optimizer.minimize(cost)
        # 初始化模型
        exe = fluid.Executor(self.place)
        exe.run(fluid.default_startup_program())
        # 准备模型训练环境
        train_exe = fluid.ParallelExecutor(use_cuda=False, loss_name=cost.name)
        fetch_names = [cost.name, acc.name, prediction.name]
        feeder = fluid.DataFeeder(place=self.place, feed_list=['data', 'label'])
        # 训练模型
        for epoch_id in range(self.epoch_num):
            # 训练一轮
            total_acc = 0
            total_cost = 0
            data_count = 0
            for batch_id, data in enumerate(train_reader()):
                cost, acc, pred = train_exe.run(
                    fetch_list=fetch_names,
                    feed=feeder.feed(data))
                cost = np.array(cost)[0]
                acc = np.array(acc)[0]
                data_size = len(data)
                total_acc += data_size * acc
                total_cost += data_size * cost
                data_count += data_size
            avg_cost = total_cost / data_count
            avg_acc = total_acc / data_count
            self.logger.info('Train: epoch %d, average cost: %f, average accuracy: %f' %
                (epoch_id, avg_cost, avg_acc))
            # 训练速度很快故只保存推理用模型
            if (epoch_id + 1) % 10 == 0:
                self.infer_model_io.save(epoch_id=epoch_id, feed_names=['data'],
                    fetch_targets=[prediction], executor=exe)

我的实验中mkldnn优化的可用性值得怀疑,请问我有什么操作不当吗?

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#12131
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7