Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • Paddle
  • Issue
  • #11082

P
Paddle
  • 项目概览

PaddlePaddle / Paddle
大约 2 年 前同步成功

通知 2325
Star 20933
Fork 5424
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 1423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
Paddle
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 1,423
    • Issue 1,423
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 543
    • 合并请求 543
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 5月 31, 2018 by saxon_zh@saxon_zhGuest

Check failed: posix_memalign(&ptr, 4096ul, size) == 0 (12 vs. 0)

Created by: Adagch

在运行到 print type(parameters)结束后,就出现长时间的卡机状态,然后就出现Check failed: posix_memalign(&ptr, 4096ul, size) == 0 (12 vs. 0)错误,结果如下,但是如果没有后面的feeding及其之后的内容,运行的话也是同样的错误。 I0531 16:48:15.966539 2922 Util.cpp:166] commandline: --use_gpu=False W0531 16:48:15.966620 2922 CpuId.h:112] PaddlePaddle wasn't compiled to use avx instructions, but these are available on your machine and could speed up CPU computations via CMAKE .. -DWITH_AVX=ON <class 'paddle.trainer_config_helpers.layers.LayerOutput'> <paddle.trainer_config_helpers.layers.LayerOutput object at 0x7f2d4d0ee110> <class 'paddle.trainer_config_helpers.layers.LayerOutput'> <paddle.trainer_config_helpers.layers.LayerOutput object at 0x7f2d4ce83210> <class 'paddle.trainer_config_helpers.layers.LayerOutput'> <class 'paddle.trainer_config_helpers.layers.LayerOutput'> <class 'paddle.v2.parameters.Parameters'> F0531 16:50:16.227624 2922 Allocator.h:54] Check failed: posix_memalign(&ptr, 4096ul, size) == 0 (12 vs. 0) *** Check failure stack trace: *** @ 0x7f2d5765b3dd google::LogMessage::Fail() @ 0x7f2d5765ee8c google::LogMessage::SendToLog() @ 0x7f2d5765af03 google::LogMessage::Flush() @ 0x7f2d5766039e google::LogMessageFatal::~LogMessageFatal() @ 0x7f2d575aff38 paddle::CpuAllocator::alloc() @ 0x7f2d575aa82f paddle::PoolAllocator::alloc() @ 0x7f2d575aa316 paddle::CpuMemoryHandle::CpuMemoryHandle() @ 0x7f2d575b5dbe paddle::CpuVectorT<>::CpuVectorT() @ 0x7f2d575b692a paddle::VectorT<>::create() @ 0x7f2d575b6a49 paddle::VectorT<>::createParallelVector() @ 0x7f2d572f9c26 paddle::Parameter::enableType() @ 0x7f2d572f7d42 paddle::NeuralNetwork::init() @ 0x7f2d57314691 paddle::GradientMachine::create() @ 0x7f2d576383d3 GradientMachine::createFromPaddleModelPtr() @ 0x7f2d576385af GradientMachine::createByConfigProtoStr() @ 0x7f2d572b700d _wrap_GradientMachine_createByConfigProtoStr @ 0x4c30ce PyEval_EvalFrameEx @ 0x4b9ab6 PyEval_EvalCodeEx @ 0x4c1e6f PyEval_EvalFrameEx @ 0x4b9ab6 PyEval_EvalCodeEx @ 0x4c16e7 PyEval_EvalFrameEx @ 0x4b9ab6 PyEval_EvalCodeEx @ 0x4d55f3 (unknown) @ 0x4eebee (unknown) @ 0x4ee7f6 (unknown) @ 0x4aa9ab (unknown) @ 0x4c15bf PyEval_EvalFrameEx @ 0x4c136f PyEval_EvalFrameEx @ 0x4b9ab6 PyEval_EvalCodeEx @ 0x4eb30f (unknown) @ 0x4e5422 PyRun_FileExFlags @ 0x4e3cd6 PyRun_SimpleFileExFlags 已放弃 (核心已转储) 下面是代码: #coding=utf-8 import paddle.v2 as paddle import cPickle import copy import os import numpy

def main(): paddle.init(use_gpu=False) #用户id uid = paddle.layer.data( name='user_id', type=paddle.data_type.integer_value(82542756))#max #print uid usr_emb = paddle.layer.embedding(input=uid, size=8) usr_fc = paddle.layer.fc(input=usr_emb, size=8)

#年龄id
usr_age_id = paddle.layer.data(
    name='age_id',
    type=paddle.data_type.integer_value(6))#max
usr_age_emb = paddle.layer.embedding(input=usr_age_id, size=8)
usr_age_fc = paddle.layer.fc(input=usr_age_emb, size=8)

# 性别id
usr_gender_id = paddle.layer.data(
    name='gender_id',
    type=paddle.data_type.integer_value(3))#max
usr_gender_emb = paddle.layer.embedding(input=usr_gender_id, size=8)
usr_gender_fc = paddle.layer.fc(input=usr_gender_emb, size=8)

#婚姻情况
usr_marry_id = paddle.layer.data(
    name = 'marry_id',
    type = paddle.data_type.integer_value(16))#max
usr_marry_emb = paddle.layer.embedding(input=usr_marry_id, size=8)
usr_marry_fc = paddle.layer.fc(input=usr_marry_emb, size=8)

#学历
usr_education_id = paddle.layer.data(
    name='education_id',
    type=paddle.data_type.integer_value(8))#max
usr_education_emb = paddle.layer.embedding(input=usr_education_id, size=8)
usr_education_fc = paddle.layer.fc(input=usr_education_emb, size=8)

#消费能力
usr_consume_id = paddle.layer.data(
    name='consume_id',
    type=paddle.data_type.integer_value(3))#max
usr_consume_emb = paddle.layer.embedding(input=usr_consume_id, size=8)
usr_consume_fc = paddle.layer.fc(input=usr_consume_emb, size=8)

#地理位置
usr_lbs_id = paddle.layer.data(
    name='lbs_id',
    type=paddle.data_type.integer_value(998))#max
usr_lbs_emb = paddle.layer.embedding(input=usr_lbs_id, size=8)
usr_lbs_fc = paddle.layer.fc(input=usr_lbs_emb, size=8)

#广告id
ad_id = paddle.layer.data(
    name='ad_id',
    type=paddle.data_type.integer_value(2217))#id最大为2216
ad_emb = paddle.layer.embedding(input=ad_id, size=8)
ad_fc = paddle.layer.fc(input=ad_emb, size=8)

#广告advertiserId

advertiser_id = paddle.layer.data(
    name='advertiser_id',
    type=paddle.data_type.integer_value(158680))  # id最大为158679
advertiser_id_emb = paddle.layer.embedding(input=advertiser_id, size=8)
advertiser_id_fc = paddle.layer.fc(input=advertiser_id_emb, size=8)

#广告campaignId
campaign_id = paddle.layer.data(
    name='campaignId',
    type=paddle.data_type.integer_value(766461))#max
campaign_id_emb = paddle.layer.embedding(input=campaign_id, size=8)
campaign_id_fc = paddle.layer.fc(input=campaign_id_emb, size=8)

#广告creativeId
creative_id = paddle.layer.data(
    name='creativeId',
    type=paddle.data_type.integer_value(1806761))#max
creative_id_emb = paddle.layer.embedding(input=creative_id, size=8)
creative_id_fc = paddle.layer.fc(input=creative_id_emb, size=8)
# 广告creativeSize
creative_size_id = paddle.layer.data(
    name='creativeSize',
    type=paddle.data_type.integer_value(110))#max
creative_size_emb = paddle.layer.embedding(input=creative_size_id, size=8)
creative_size_fc = paddle.layer.fc(input=creative_size_emb, size=8)
#广告adCategoryId
ad_category_id = paddle.layer.data(
    name='adCategoryId',
    type=paddle.data_type.integer_value(283))#max
ad_category_id_emb = paddle.layer.embedding(input=ad_category_id, size=8)
ad_category_id_fc = paddle.layer.fc(input=ad_category_id_emb, size=8)
#广告productId
product_id = paddle.layer.data(
    name='productId',
    type=paddle.data_type.integer_value(28987))#max
product_id_emb = paddle.layer.embedding(input=product_id, size=8)
product_id_fc = paddle.layer.fc(input=product_id_emb, size=8)
#广告productType
product_type = paddle.layer.data(
    name='productType',
    type=paddle.data_type.integer_value(12))#max
product_type_emb = paddle.layer.embedding(input=product_type, size=8)
product_type_fc = paddle.layer.fc(input=product_type_emb, size=8)

usr_combined_features = paddle.layer.fc(
    input=[usr_fc, usr_age_fc, usr_gender_fc, usr_marry_fc, usr_education_fc, usr_consume_fc, usr_lbs_fc],
    size=50,
    act=paddle.activation.Tanh())
print type(usr_combined_features)
print usr_combined_features
ad_combined_features = paddle.layer.fc(
    input=[ad_fc, advertiser_id_fc, campaign_id_fc,creative_id_fc,creative_size_fc,ad_category_id_fc,product_id_fc,product_type_fc],
    size=50,
    act=paddle.activation.Tanh())
print type(ad_combined_features)
print ad_combined_features
inference = paddle.layer.cos_sim(
    a=usr_combined_features, b=ad_combined_features, size=1, scale=5)
print type(inference)
cost = paddle.layer.square_error_cost(
    input=inference,
    label=paddle.layer.data(name='label', type=paddle.data_type.integer_value(2)))
print type(cost)
parameters = paddle.parameters.create(cost)
print type(parameters)
trainer = paddle.trainer.SGD(
    cost=cost,
    parameters=parameters,
    update_equation=paddle.optimizer.Adam(learning_rate=1e-4))
print trainer
print type(trainer)
feeding = {
    'label': 0,
    'ad_id': 1,
    'advertiser_id': 2,
    'campaignId': 3,
    'creativeId': 4,
    'creativeSize': 5,
    'adCategoryId': 6,
    'productId': 7,
    'productType': 8,
    'user_id': 9,
    'age_id': 10,
    'gender_id': 11,
    'marry_id': 12,
    'education_id': 13,
    'consume_id': 14,
    'lbs_id': 15
}

def event_handler(event):
    if isinstance(event, paddle.event.EndIteration):
        if event.batch_id % 100 == 0:
            print "Pass %d Batch %d Cost %.2f" % (
                event.pass_id, event.batch_id, event.cost)

# 新添加的,修改部分
def train_reader():
    train_1 = numpy.loadtxt('t2_1.txt', delimiter=',')
    def reader():
        for i in xrange(len(train_1)):
            yield train_1[i]

    return reader()

trainer.train(
    reader=paddle.batch(
        paddle.reader.shuffle(
            train_reader, buf_size=8192),
        batch_size=256),
    event_handler=event_handler,
    feeding=feeding,
    num_passes=1)

if name == 'main': main() 文件t2_1.txt内容如下:(100条数据) 1,748,8203,37818,202309,59,142,0,6,3467967,4,1,15,7,1,244 1,1119,3993,63752,798752,59,10,19256,11,63515159,3,1,11,6,1,192 1,1566,6946,296367,520004,59,24,3794,11,29244339,3,1,13,2,2,592 1,1201,5552,68476,1172593,35,27,113,9,52296860,5,2,12,6,1,72 1,311,915,994,27461,60,51,0,4,15851097,1,1,10,2,0,810 1,765,388,134068,1271219,35,27,113,9,74834157,1,2,10,6,2,446 1,2196,20943,445098,767513,53,4,0,4,8762244,4,2,10,2,1,432 1,1512,702,20048,1246897,42,34,5615,11,68672800,4,1,11,2,1,152 1,1291,1082,40405,1434096,53,13,0,6,50286402,1,1,10,7,1,115 1,725,370,170485,1485462,22,67,113,9,35500121,2,2,10,2,0,687 1,1119,3993,63752,798752,59,10,19256,11,58854550,3,1,11,1,1,75 1,70,327,5616,5977,22,27,113,9,65402229,2,2,10,1,2,246 1,692,6946,296367,455396,59,24,3794,11,68071308,3,1,0,1,2,188 1,70,327,5616,5977,22,27,113,9,71317618,2,2,13,6,1,986 1,411,9106,163120,220179,79,21,0,4,24145001,2,1,13,2,1,112 1,692,6946,296367,455396,59,24,3794,11,26445217,1,1,10,7,1,348 1,916,17597,51385,838056,35,25,0,6,52724599,1,2,10,6,2,317 1,231,11487,159012,991964,20,1,0,4,61919288,5,2,0,3,0,83 1,117,702,18552,619519,53,24,5615,11,1950387,3,1,10,1,0,83 1,2050,19441,178687,245165,53,1,0,6,6194240,3,1,0,2,0,435 1,1415,133292,464828,1334609,22,74,0,4,43057817,4,1,11,2,1,816 1,411,9106,163120,220179,79,21,0,4,38047467,5,2,10,7,1,348 1,1415,133292,464828,1334609,22,74,0,4,39110333,5,1,11,6,1,458 1,70,327,5616,5977,22,27,113,9,39721813,2,2,10,2,2,246 1,1415,133292,464828,1334609,22,74,0,4,51834299,4,1,11,6,1,338 1,1119,3993,63752,798752,59,10,19256,11,21468794,3,1,10,2,1,361 1,2013,6937,186348,1427984,35,89,3791,9,11037442,2,1,10,2,1,458 1,914,47823,111645,141973,100,21,0,4,812262,4,1,11,7,1,329 1,765,388,134068,1271219,35,27,113,9,48244145,2,2,10,2,1,94 1,136,452,50305,1187573,35,10,7992,11,47172393,4,1,11,2,2,687 1,1119,3993,63752,798752,59,10,19256,11,43562595,3,1,11,1,2,353 1,369,66025,170445,1229175,109,94,0,4,50891107,5,1,11,7,1,112 1,1023,8494,12711,192305,42,24,4666,11,48487376,4,1,11,1,0,271 1,206,13915,23303,440096,91,108,0,4,23173916,1,1,13,7,1,360 1,543,1082,295940,1391569,59,22,0,6,24920509,1,2,13,7,1,115 1,1291,1082,40405,1434096,53,13,0,6,25555458,1,1,13,7,1,458 1,975,8494,76011,913588,59,24,4666,11,63744251,2,1,0,7,1,809 1,411,9106,163120,220179,79,21,0,4,34978201,2,1,10,6,1,783 1,1827,17597,51385,1236432,35,27,0,6,42198245,5,2,6,1,2,839 1,411,9106,163120,220179,79,21,0,4,5567656,5,1,10,7,1,857 1,404,821,888,1353465,59,10,439,11,79114026,2,1,10,2,0,803 1,1468,915,994,1610899,60,51,0,4,47258910,2,1,10,2,1,592 1,1119,3993,63752,798752,59,10,19256,11,18954714,3,1,10,6,0,514 1,2118,11195,19215,1012717,53,140,0,4,45501967,2,1,11,7,1,192 1,1749,21359,361928,585909,100,21,0,4,73670587,5,1,11,1,0,112 1,1119,3993,63752,798752,59,10,19256,11,53203349,3,1,0,2,1,524 1,1021,388,243160,1249596,22,27,113,9,33579047,5,2,13,7,1,464 1,725,370,170485,1485462,22,67,113,9,80887595,4,2,11,2,1,585 1,914,47823,111645,141973,100,21,0,4,44336434,4,1,11,7,1,737 1,1415,133292,464828,1334609,22,74,0,4,16946731,4,1,11,7,1,18 1,2048,8203,37818,240336,59,142,0,6,39627326,4,2,11,7,1,27 1,174,11487,668182,1512679,22,21,0,4,27171171,3,1,11,3,1,833 1,311,915,994,27461,60,51,0,4,53203989,1,1,10,1,2,56 1,914,47823,111645,141973,100,21,0,4,52466809,2,1,5,6,1,652 1,1931,7300,36763,1401261,79,21,0,4,24594565,5,1,13,7,1,458 1,1918,158679,643438,1690612,60,4,0,4,22757215,5,1,11,2,2,879 1,562,21017,167166,864509,109,179,0,4,20318516,1,2,10,7,2,792 1,692,6946,296367,455396,59,24,3794,11,52429638,3,1,0,2,1,859 1,1468,915,994,1610899,60,51,0,4,47128987,1,1,10,2,1,375 1,1918,158679,643438,1690612,60,4,0,4,69214066,4,1,11,7,0,514 1,1468,915,994,1610899,60,51,0,4,70426873,2,1,13,7,2,27 1,1790,8494,12711,1636465,42,24,4666,11,41055704,4,1,11,1,1,112 1,765,388,134068,1271219,35,27,113,9,47613506,1,2,10,0,2,194 1,389,9106,662422,1354071,79,21,0,4,53672317,2,1,10,2,0,932 1,311,915,994,27461,60,51,0,4,45284219,1,1,10,1,1,121 1,1338,702,12724,1147463,105,10,4669,11,44449150,3,1,13,2,1,267 1,1350,7565,353610,1554384,109,94,0,4,39622577,1,1,13,7,1,346 1,1918,158679,643438,1690612,60,4,0,4,80390066,4,1,11,2,2,29 1,18,8203,74452,857791,95,218,0,6,49571126,1,2,10,7,2,737 1,173,6937,186348,267290,35,89,3791,9,50677511,2,1,0,7,1,864 1,1291,1082,40405,1434096,53,13,0,6,54132009,1,1,13,7,1,555 1,2205,370,286844,1149439,22,67,113,9,26627959,1,2,13,6,2,270 1,792,8350,331396,1564743,22,59,0,4,73597952,1,2,13,2,2,921 1,70,327,5616,5977,22,27,113,9,16338888,2,2,10,2,2,432 1,916,17597,51385,838056,35,25,0,6,16399840,2,2,13,2,1,346 1,70,327,5616,5977,22,27,113,9,63966327,2,2,10,3,2,45 1,411,9106,163120,220179,79,21,0,4,48662777,2,1,11,6,1,273 1,692,6946,296367,455396,59,24,3794,11,12380611,1,1,10,7,0,774 1,1379,8864,90700,469197,22,27,113,9,69573669,2,1,10,2,1,209 1,2050,19441,178687,245165,53,1,0,6,30891193,5,1,11,7,1,441 1,1596,24704,48236,181137,35,27,113,9,32263276,2,2,0,7,2,244 1,302,18621,745599,1628574,91,21,0,4,67276726,3,2,11,2,0,856 1,914,47823,111645,141973,100,21,0,4,32767857,4,1,11,1,1,421 1,1950,41806,233191,1016027,35,13,27855,9,17426513,2,1,10,6,1,737 1,404,821,888,1353465,59,10,439,11,18170127,4,1,15,2,0,0 1,2118,11195,19215,1012717,53,140,0,4,47783650,1,1,10,2,1,687 1,1596,24704,48236,181137,35,27,113,9,20659211,2,2,10,1,2,346 1,1483,1082,40405,418462,53,13,0,6,38444025,2,1,13,6,1,486 1,1291,1082,40405,1434096,53,13,0,6,58341820,2,1,10,2,1,964 1,792,8350,331396,1564743,22,59,0,4,55466074,1,2,12,7,1,964 1,302,18621,745599,1628574,91,21,0,4,77134272,3,2,13,2,1,86 1,1377,388,209098,1146648,35,27,113,9,28379936,5,2,13,2,2,61 1,692,6946,296367,455396,59,24,3794,11,25584257,2,1,10,2,1,833 1,792,8350,331396,1564743,22,59,0,4,71750264,1,2,10,7,0,678 1,1017,11487,741453,1614385,22,21,0,4,13473925,4,1,11,1,1,170 1,1140,43189,98158,1305307,22,43,28986,9,2974662,5,1,10,7,2,94 1,1254,8350,244601,1383456,35,59,0,4,31785917,5,2,6,6,1,585 1,191,25485,50138,58465,35,51,15454,11,24176325,2,1,10,7,0,774 1,692,6946,296367,455396,59,24,3794,11,26473709,1,1,13,5,1,458 1,1291,1082,40405,1434096,53,13,0,6,47137371,1,2,10,7,1,921

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/Paddle#11082
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7