- 22 2月, 2021 9 次提交
-
-
由 Huihuang Zheng 提交于
**Problem** In our old shape transformer logic, if user write: ``` s = tensor.shape ... y = paddle.some_api(s) ``` Dy2stat will change it to ``` ... y = paddle.some_api(convert_var_shape(tensor)) ``` However it will cause fatal bug if user changes the shape of `x` after assign. For example: ``` s = tensor.shape ... tensor = paddle.some_change_shape_api(tensor) ... y = paddle.some_api(s) ``` Then the Dy2stat will get wrong result because the code is translated into: ``` tensor = paddle.some_change_shape_api(tensor) ... y = paddle.some_api(convert_var_shape(tensor)) # tensor shape has been changed, not origin `s` value ``` **Solution Logic** It can not be solved in the old logic, so I refactoring tensor_shape_transformer logic. Now we will use `s` to store shape attribute and generate a var `s__STATIC_CONVERT_VAR_SHAPE_SUFFIX` to store static shape API `shape(tensor)` ``` s = tensor.shape ... y = paddle.some_api(s) ``` Dy2stat will change it to ``` s = tensor.shape s__STATIC_CONVERT_VAR_SHAPE_SUFFIX = shape(tensor) ... y = paddle.some_api(choose_shape_attr_or_api(s, s__STATIC_CONVERT_VAR_SHAPE_SUFFIX )) ``` In this case, the code is consistent with origin dygraph meaning and it fixed the change after assign bug. **Code Key Note** To help reviewers, the key change of this PR is changing `self.name_to_var_shape` from "mapping name to shape node" to "mapping name to its STATIC_CONVERT_VAR_SHAPE_SUFFIX name", then if a variable name has the SUFFIX, we can choose to use attribute shape or shape api. Other changes go with the key change. **Consideration** The issue of this PR is that we store extra static `shape` API result, will it harms the speed of Dy2stat? In some cases it will, but we argue that the benefit would be greater than the cost. 1. The extra calling to static `shape` API will happen when coder assign among shape variables. Take the following dygraph code as an instance: ``` s1 = tensor.shape s2 = s1 s3 = s2 ... ``` Then we called extra static `shape` APIs again and again, however users seldom write code like this. 2. If the shape variable is used a lot, for example: ``` s = tensor.shape y1 = paddle.some_api1(s) y2 = paddle.some_api2(s) y3 = paddle.some_api3(s) ``` Our old logic will create 3 shape APIs but now just 1. This is more common user code pattern. In fact, if reviewers take a look at the current unit test in this PR, you could see the op numbers decrease after this PR. So we argue that this PR can also improve speed in this code pattern.
-
由 tangwei12 提交于
* fix dist fleet ctr ut Change-Id: I59bf5123c7bd47bd0e8f1ca2a26295257597c0f5 * fix dist fleet ctr ut Change-Id: Iafcdd172364be47fe67b753774ce09af050bcbce * Update CMakeLists.txt
-
由 Qi Li 提交于
-
由 Qi Li 提交于
-
由 Shang Zhizhou 提交于
* update trt int8 calibrator to IEntropyCalibratorV2 * add delele opt_cache for trt_split_converter_test
-
由 Zhou Wei 提交于
* [2.0.1]Support New Custom OP on windows * fix CI * fix code style * fix CI * fix CI * fix coverage * fix CI * fix CI
-
由 Chen Weihang 提交于
-
由 Qi Li 提交于
* [ROCM] update fluid imperative for rocm (part1), test=develop * [ROCM] update reducer.cc after merge, test=develop * update reducer cmake after merge, test=develop
-
由 JamesLim 提交于
-
- 20 2月, 2021 12 次提交
-
-
由 Chengmo 提交于
* remove pe special profiler * add profiler info
-
由 Chen Weihang 提交于
* add more dispatch marco * add more dispatch marco * add more tests * revert unneeded change * add timeout for test dispatch * add float and complex test * remove and marco
-
由 TTerror 提交于
add squeeze_op/unsqueeze_op on kunlun;fix conv op and parallel executor;optimize lookup_table op (#31056) * add squeeze_op/unsqueeze_op on kunlun; fix conv op and parallel executor on kunlun; optimize lookup_table op on kunlun * update squeeze/unsqueeze op
-
由 123malin 提交于
* test=develop, save/load, shrink Co-authored-by: NseiriosPlus <tangwei12@baidu.com>
-
由 Shibo Tao 提交于
* export paddle.static.normalize_program method. test=develop * fix ut coverage.test=develop
-
由 Jiabin Yang 提交于
-
由 Wilber 提交于
* update paddle_fluid.so to paddle_inference.so
-
由 tangwei12 提交于
* change reviewer, test=document Change-Id: I7592ee5c93bd580300ce39df885b603597b09026 * Update check_file_diff_approvals.sh test=document_fix
-
由 liym27 提交于
* [static setitem] support the index step > 1. tensor_a[::3] = value * [static setitem] support the index step < 0. Eg: tensor_a[::-3] = value * [static setitem] support the index is Tensor. eg: tensor_a[tensor_3:0:-1] = value * Add op version.
-
由 Qi Li 提交于
-
由 Jack Zhou 提交于
-
由 Huihuang Zheng 提交于
As the title, when slice_node like 1:3 being passed to idx of convert_var_shape, it will cause syntax error because a function cannot take this as argument. This PR fixed it.
-
- 19 2月, 2021 12 次提交
-
-
由 Jacek Czaja 提交于
* - added Reshape grad bf16 * - Added reshape grad bf16 * - cosmetics in py
-
由 Aurelius84 提交于
* refine setup name usage * fix unittest failed
-
由 Aurelius84 提交于
-
由 Wojciech Uss 提交于
* Modify relu native implementation * fix GPU performance
-
由 ShenLiang 提交于
-
由 Wilber 提交于
-
由 Wilber 提交于
-
由 Wilber 提交于
-
由 Wilber 提交于
-
由 Kaipeng Deng 提交于
* fix dataloader collate return list mix tensor and numpy array. test=develop
-
由 Guanghua Yu 提交于
* add parameter in roi_align op
-
由 Chen Weihang 提交于
-
- 18 2月, 2021 7 次提交
-
-
由 Zhang Ting 提交于
* enable exhaustive_search for input_grad when dtype is float16 * enable exhaustive_search for forward algos
-
由 Pei Yang 提交于
-
由 Aurelius84 提交于
* add more unitest for ABI compatibility * add more unittest * refine warning style * support compile multi custom ops in same time * fix not import paddle in unittest * fix typo * add more unittest * add comment for details
-
由 joanna.wozna.intel 提交于
* Add conv transpose BF16 * Share function GetWeightsTz * Adjust to review and fix op compatibility * Add bias to unique handler name * Remove errors related to paddle enforce * Add conv2d_transpose to bf16 list and kernel refator
-
由 Huihuang Zheng 提交于
Refine fake_interface Error Message
-
由 Huihuang Zheng 提交于
Dy2stat didn't support tuple as iteration variable in the past. This PR added there main cases: 1). Non-enumerate case: for var1, var2 in var|var.numpy() will be re-written as: for FOR_ITER_TUPLE_PREFIX_x in var | var.numpy(): var1 = FOR_ITER_TUPLE_PREFIX_x[0] var2 = FOR_ITER_TUPLE_PREFIX_x[1] 2). Enumerate out tuple case: for t in enumerate(var|var.numpy) will be rewritten as: for FOR_ITER_TUPLE_INDEX_PREFIX_x, FOR_ITER_TUPLE_PREFIX_x in enumerate(var|var.numpy): t = (FOR_ITER_TUPLE_INDEX_PREFIX_x, FOR_ITER_TUPLE_PREFIX_x) 3). Enumerate inner tuple case: for i, (var1, (var2, va3)) in enumerate(var|var.numpy()) will be re-written as: for i, FOR_ITER_TUPLE_PREFIX_x in var | var.numpy(): var1 = FOR_ITER_TUPLE_PREFIX_x[0] var2 = FOR_ITER_TUPLE_PREFIX_x[1][0] var3 = FOR_ITER_TUPLE_PREFIX_x[1][1]
-
由 Wojciech Uss 提交于
-