- 24 2月, 2018 2 次提交
- 13 2月, 2018 1 次提交
-
-
由 Xin Pan 提交于
Currently, our tests run with 2 GPUs, the init time is absurdly long: about 4s for each process. Currently, we run each OP test on different processes. This PR: 1. create cmake function py_test_modules which will generate the Makefile that runs a list of Python unittest module in a single Python process. 2. move all "python unittest compatible" (e.g., used the unittest package, not just a regular python file). from fluid/tests to fluid/tests/unittests. 3. cmake now will run all OP tests in fluid/tests/unittests in a single process, except the time-consuming tests, they are separated into different processes to utilize parallelism. Please make sure to use the unittest package if you put the python test file in fluid/tests/unittests 4. remove all exit(0) from fluid/tests/unittests/*.py, exit(0) is used to disable unittest, we can not do it when running all tests in a single process since it will terminate the process without running the other tests. Instead, the test is disabled in fluid/tests/unittests/CMakeLists.txt. FIXME is added for each disabled item. Please disable the unittest from fluid/tests/unittests/CMakeLists.txt, instead of adding exit(0) to the Python file, for all Python file in fluid/tests/unittests/. 5. add an option WITH_FAST_BUNDLE_TEST. When OFF, will run the unit tests in separate process so that they can be tested individually.
-
- 12 2月, 2018 1 次提交
-
-
由 qingqing01 提交于
-
- 21 1月, 2018 1 次提交
-
-
由 dzhwinter 提交于
* "fix decode bug" * "follow commnet" * "fix error" * "fix hook bug" * fix based comment * fix copyright * fix based on comment
-
- 15 1月, 2018 1 次提交
-
-
由 dzhwinter 提交于
* add copyright hook * add copyright hook * refine copyright hook * "test copyright hook" * fix check style * fix ci
-
- 28 11月, 2017 1 次提交
-
-
由 Yu Yang 提交于
* Unify fluid submodules to fluid module Change books just use `import fluid`, not submodules * Remove g_main_program/g_startup_program Use default_main_program/default_startup_program instead * Typo * Fix CI
-
- 14 11月, 2017 1 次提交
-
-
由 Qiao Longfei 提交于
* init commit * change some dir name
-
- 08 11月, 2017 1 次提交
-
-
由 Yu Yang 提交于
* Add LoDRankTable LoD Rank Table stores the `level` of `lod` which is ordered by sequence length in descending order. It is useful when implement dynamic RNN and is shared by dynamic RNN memory, dynamic RNN slice input and dynamic RNN slice output operators. * Add skeleton for array_to_lod_tensor and lod_tensor_to_array * Add VarType::LoDTensorArray * Add PyBind of LoDTensorArray * Add InferVarType * Add first unittest * Add ut * Add unittest * Add unittest * Add unittests * update * init * add infershape for lod_tensor_to_array_op * compelete array_to_lod_tensor_op * copy data * clean code * clean code * Fix unittest data * fix bugs * fix compile error * Refine TensorToArrayOp * refactor array_to_lod_tensor * Unittest * fix bugs * Fix unittest * Fix unittest * debug * Debug * Fix unittest * clean code * refactor * use ostream * update test * fix gpu build error * make gpu test pass
-
- 05 11月, 2017 1 次提交
-
-
由 Yu Yang 提交于
-
- 04 11月, 2017 1 次提交
-
-
由 Yu Yang 提交于
* Add LoDRankTable LoD Rank Table stores the `level` of `lod` which is ordered by sequence length in descending order. It is useful when implement dynamic RNN and is shared by dynamic RNN memory, dynamic RNN slice input and dynamic RNN slice output operators. * Add InferVarType
-