- 22 5月, 2023 1 次提交
-
-
由 Meteor Liu 提交于
* [dygraph]unify _non_static_mode() in_dygraph_mode() and in_dynamic_mode() * [dygraph]unify _non_static_mode() in_dygraph_mode() and in_dynamic_mode() * [dygraph]unify _non_static_mode() in_dygraph_mode() and in_dynamic_mode() * [dygraph]unify _non_static_mode() in_dygraph_mode() and in_dynamic_mode() * [dygraph]unify _non_static_mode() in_dygraph_mode() and in_dynamic_mode() * [dygraph]unify _non_static_mode() in_dygraph_mode() and in_dynamic_mode() * fixed cyclic reference that caused patial import * fixed bad change * fix bad import * fix bad import * fix bad import * fix ut failed caused by change in_dynamic_mode * fix ut failed caused by change in_dynamic_mode * fixed usage of in_dynamic_mode() or in_dygraph_mode() * revert python3 to python in .pre-commit-config.yaml * fix merge conflicts
-
- 12 5月, 2023 1 次提交
-
-
由 HydrogenSulfate 提交于
* fix jacobian and hessian's docstring * fix hessian's docstring * fix hessian's docstring
-
- 27 4月, 2023 1 次提交
-
-
由 HydrogenSulfate 提交于
* add jacobian and hessian in paddle.autograd * disable unitest 'func_multi_input' for bug in high-order gradient of multiply * add dimension checks * add support for 0-D tensor * change return type from Jacobian to Hessian in hessian function * refine Jacobian _flatten function for single xs * refine support for 0-D tensor * 1. add 'func_multi_input' unitest for multiply_grad_kernel bug fixed already. 2. support non-inplace math operation via magical method overwriting. * add unitest for math operation and raise error when 0-D tensor is indexed * add ndim check on ys and xs according to is_batched, and add one unitest * refine docstring of jacobian and hessian * move paddle.incubate.autograd.Jacobian/Hessian to paddle.incubate.autograd.functional.Jacobian/Hessian * remove single_input unitest case because numerical differentiation is wrong * remove 3 unitest for numerical result(reference result) is wrong * 1. rename autodiff.py to autograd.py 2. increase TIMEOUT to 100 * cancel modification for functional Jacobian/Hessian * 1. use tuple as return type instead of list 2. refine docstring * add more unitest case to improve coverage * remove 2 unitest of Hessian for numerical result is wrong * remove 1 unitest of Hessian for numerical result is wrong * remove 1 unitest of Hessian for numerical result is wrong * change unit test to shape check * correct doc and replace incubate API to stable API in _grad
-