1. 22 5月, 2023 1 次提交
    • M
      [dygraph]unify _non_static_mode() in_dygraph_mode() and in_dynamic_mode() (#53856) · 3794d171
      Meteor Liu 提交于
      * [dygraph]unify _non_static_mode() in_dygraph_mode() and in_dynamic_mode()
      
      * [dygraph]unify _non_static_mode() in_dygraph_mode() and in_dynamic_mode()
      
      * [dygraph]unify _non_static_mode() in_dygraph_mode() and in_dynamic_mode()
      
      * [dygraph]unify _non_static_mode() in_dygraph_mode() and in_dynamic_mode()
      
      * [dygraph]unify _non_static_mode() in_dygraph_mode() and in_dynamic_mode()
      
      * [dygraph]unify _non_static_mode() in_dygraph_mode() and in_dynamic_mode()
      
      * fixed cyclic reference that caused patial import
      
      * fixed bad change
      
      * fix bad import
      
      * fix bad import
      
      * fix bad import
      
      * fix ut failed caused by change in_dynamic_mode
      
      * fix ut failed caused by change in_dynamic_mode
      
      * fixed usage of in_dynamic_mode() or in_dygraph_mode()
      
      * revert python3 to python in .pre-commit-config.yaml
      
      * fix merge conflicts
      3794d171
  2. 12 5月, 2023 1 次提交
  3. 27 4月, 2023 1 次提交
    • H
      Add jacobian and hessian (#53331) · e8d296ef
      HydrogenSulfate 提交于
      * add jacobian and hessian in paddle.autograd
      
      * disable unitest 'func_multi_input' for bug in high-order gradient of multiply
      
      * add dimension checks
      
      * add support for 0-D tensor
      
      * change return type from Jacobian to Hessian in hessian function
      
      * refine Jacobian _flatten function for single xs
      
      * refine support for 0-D tensor
      
      * 1. add 'func_multi_input' unitest for multiply_grad_kernel bug fixed
      already.
      2. support non-inplace math operation via magical method overwriting.
      
      * add unitest for math operation and raise error when 0-D tensor is indexed
      
      * add ndim check on ys and xs according to is_batched, and add one unitest
      
      * refine docstring of jacobian and hessian
      
      * move paddle.incubate.autograd.Jacobian/Hessian to paddle.incubate.autograd.functional.Jacobian/Hessian
      
      * remove single_input unitest case because numerical differentiation is wrong
      
      * remove 3 unitest for numerical result(reference result) is wrong
      
      * 1. rename autodiff.py to autograd.py
      2. increase TIMEOUT to 100
      
      * cancel modification for functional Jacobian/Hessian
      
      * 1. use tuple as return type instead of list
      2. refine docstring
      
      * add more unitest case to improve coverage
      
      * remove 2 unitest of Hessian for numerical result is wrong
      
      * remove 1 unitest of Hessian for numerical result is wrong
      
      * remove 1 unitest of Hessian for numerical result is wrong
      
      * change unit test to shape check
      
      * correct doc and replace incubate API to stable API in _grad
      e8d296ef